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Abstract

Power law-like distributions for city populations are a distinctive, recurring feature
of human settlement patterns. We propose a novel explanation for this phenomenon
that reflects the qualities of a place (fundamentals) and its ability to benefit from trade
based on its location (market access), two important forces that have not simultane-
ously been incorporated into an explanation of the city size distribution. Using ran-
dom variation in geography to model these two terms within a quantitative spatial
model results in lognormal population distributions which appear to follow a power
law for the most populous locations (i.e., cities).
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1 Introduction

The most remarkable empirical regularity in spatial economics is that the upper tail of
the city size distribution appears to follow a power law, a phenomenon often referred to
as Zipf’s Law. Why this regularity arises is a question that quantitative spatial models,
which form the basis of modern spatial economics, have thus far failed to answer. While
a key feature of these models is their ability to recover the unobserved productivities and
amenities1 of each location—the locational “fundamentals”—that rationalize the observed
populations, they do not explain why the underlying locational fundamentals andmarket
access should consistently generate the characteristic city size distribution. By contrast,
existing explanations of Zipf’s Law are inconsistent with quantitative spatial models. For
example, these explanations either allow no role for a location’s characteristics (Brakman
et al. 1999; Hsu 2012; Rante et al. 2024), no role for a place’s interactions with other lo-
cations (Lee and Li 2013; Behrens and Robert-Nicoud 2015), or no role for either factor
to determine a city’s population (Gabaix 1999b). That is, the literature that models the
forces shaping cities cannot explain the regularity of the city size distribution, while the
literature explaining city size distributions ignores the forces shaping cities.

Our paper provides a novel path out of this conundrum by showing that random vari-
ation in geography can generate the characteristic city size distributionwithin quantitative
spatial models. Wemodel a location’s fundamentals as resulting from randomvariation in
its locational “attributes”, the set of exogenous geographic features which affect locational
fundamentals. Similarly, we model a location’s market access as resulting from random
variation in trade costs arising from geography. Locational fundamentals and market ac-
cess, we then show, will be lognormally distributed. Together, these will generate a log-
normal population distribution within quantitative spatial models. As a lognormal distri-
bution approximates a power law in the upper tail, our framework naturally generates the
characteristic power law-like city size distribution. Our key technical advance is to show
that random variation can generate a lognormalmarket access term due to thewaymarket
access is constructedwithin thesemodels. This advances prior work, in particular Lee and
Li (2013), that has only used many random “factors” to generate lognormally distributed
fundamentals in a model without trade.

The intuition for why random variation within and across space generates a lognor-
mal population distribution relies on two applications of a central limit theorem. Within
the Allen and Arkolakis (2014) quantitative spatial framework, we show that the popula-

1Productivities are output shifters in production functions. Amenities are utility shifters that affect the
utility one earns at a certain real wage.
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tion of each location can be expressed as the product of two terms. One term represents
that location’s market access and is written as a trade cost-weighted sum over all loca-
tions. The other term solely reflects that location’s fundamentals, which are a function of
its attributes. Ourmajor contribution is to characterize the distributions of both the funda-
mentals and the trade costs influencing market access resulting from random geographic
variation, and we accomplish this in two steps. First, we provide a novel proof for the dis-
tribution of our market access term, applying a result from Marlow (1967) about central
limit theorems for sums of positive random variables. We apply this result to the market
access summation, where trade costs vary to reflect differences in geography, and it ren-
ders the market access terms lognormally distributed. Second, we model the locational
fundamentals as multiplicative aggregates of randomly distributed locational attributes.
Sincemultiplicative processes are additive in logs, the locational fundamentalswill also be
lognormally distributed by a central limit theorem. The population distribution, a product
of these two lognormal terms, will thus be lognormally distributed.

The separation of the explanation into twoparts has attractive economic interpretations
because there is substantial empirical evidence that both a place’s characteristics and its
location in space influence its population. Within quantitative spatial models, the former
is reflected by a location’s fundamentals and the latter by its market access. Our paper is
the first to show how these forces jointly produce the distinctive population distribution.
This result holds even allowing for other important economic forces captured by these
models, such as agglomeration and congestion externalities, to influence the population.

We simulate our model to test our framework’s robustness and ability to match results
in the theoretical and empirical literatures. We show that differences in local productiv-
ity spillovers, intra-city congestion externalities, and inter-city transportation costs can
explain variation in the city size distribution observed in data. We find that as agglomer-
ation benefits rise the size distribution becomes more unequal, consistent with observed
changes to the U.S. city size distribution (Gabaix and Ioannides 2004). Increasing inter-
city transportation costs also results in amore unequal city size distribution. This provides
a potential explanation for the very large “primate” cities and unequal city size distribu-
tions of developing countries, where domestic transportation costs are often much higher
than in developed countries (Teravaninthorn and Gaël 2009; Atkin and Donaldson 2015).

Our paper touches on several branches of the spatial economics literature. Many the-
oretical explanations of the city size distribution are based on the similarly striking em-
pirical observation that city growth rates often appear unrelated to city population, such
as Gabaix (1999a), Gabaix (1999b), Blank and Solomon (2000), Eeckhout (2004), Rossi-
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Hansberg andWright (2007), and Córdoba (2008).2 However, the assumption of random
growth is inconsistent with the empirical evidence on the distribution of cities in signif-
icant ways. The growth of cities does not appear random in many important cases, par-
ticularly following major shocks.3 Random growth explanations also fail to capture the
influence of the characteristics of a place on the attractiveness of producing or residing
there, implying that the large populations of New York City, Tokyo, and London are ran-
dom and unrelated to their advantageous geographies. These theories are also aspatial
and do not allow for interactions between different locations to shape settlement patterns,
failing to capture the contribution of trade to the scale of the aforementioned global cities.4

There are papers within the literature on city size distributions that have accounted
for either the role of a place’s characteristics or its location in determining its population,
but our paper is the first to include these important forces simultaneously. Papers that
do account for the importance of geography or fundamentals, such as Lee and Li (2013)
and Behrens and Robert-Nicoud (2015), have lacked trade between locations. In contrast,
those papers which account for the importance of trade and market access, such as Brak-
man et al. (1999), Hsu (2012), and Rante et al. (2024), are models without differentiated
geographies with identical locations. By placing our explanation for the distribution’s
emergence within a quantitative spatial model, we can include roles for both local charac-
teristics and trade between locations. Further, given the properties of quantitative spatial
models, we also demonstrate that population distributions will exhibit random growth
in equilibrium in response to increases in the aggregate population level. This provides
consistencywith the observation of random growth inmany contexts that motivated prior
models.

By integrating the literature on population distributions with that on quantitative spa-
tial models, we show the conditions under which these models generate the characteristic
city size distribution. Models of the spatial economy, beginning with Krugman (1991),
Helpman (1998), and Fujita et al. (1999), highlight the roles of space, local spillovers, and
the importance of trade between locations in determining population distributions. The

2Random growth is often referred to in the literature as Gibrat’s law. The “law” is an application of the
central limit theorem to the log of the product of independent shocks, originally formulated to describe the
growth of firms (Gibrat 1931).

3Notable instances of recovery from shocks are documented in Davis and Weinstein (2002), Brakman
et al. (2004) and Davis and Weinstein (2008) following bombings, and in Johnson et al. (2019) following
pandemics. Desmet and Rappaport (2017) also document the absence of the random growth phenomenon
for cities during the settlement of the American West.

4New York City is located on one of the largest natural harbors on Earth and its much greater population
relative to Lost Springs, Wyoming—the 2020 population ratio was 8,804,190 to 6—is likely related to New
York’s favorable geography and the benefits of its location for trade. Some attributes of landlocked Lost
Springs include its low annual precipitation and a coal mine which last operated in the 1930s.
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spatial literature is now based on quantitative spatial models as developed in Allen and
Arkolakis (2014), Redding (2016) andRedding andRossi-Hansberg (2017). The literature
on quantitative spatial models suffers frommuch the opposite problem than that afflicting
the literature on the city size distribution. While quantitative spatial models incorporate
many of the forces that influence the size of cities, they do not explain the regularity of the
population distribution. These models can recover the unobserved qualities of each lo-
cation, their “fundamentals,” which rationalize observed populations. Yet this inversion
is possible for any arbitrary vector of “populations,” even those with little resemblance
to real-world population distributions.5 We demonstrate how both heterogeneity in the
attributes of different places and trade across space will generate lognormal population
distributions in equilibrium as a result of random variation in geography.6 Thus, we show
how the models within this literature can be used to provide a deep explanation for why
the population tends to be distributed in a particular way within countries. As our result
relies solely on variation in geography and applications of a central limit theorem within
these models, its simplicity and generality can explain the consistent observation of this
phenomenon in many contexts.

Our framework also provides a strong theoretical link between observable character-
istics of the world, which a broad literature demonstrates are important for local popu-
lations, and the entire city size distribution. The largest cities around the world tend to
be in locations that are good for production and offer quality-of-life benefits to residents.
The literature has found a large role for such “first-nature” geographic characteristics in
explaining local populations, as in Rappaport and Sachs (2003), Nordhaus (2006), Nunn
and Puga (2012), Henderson et al. (2018), Bosker and Buringh (2017), and Alix-Garcia
and Sellars (2020). We show that embedding fundamentals modeled as in Lee and Li
(2013) and Behrens and Robert-Nicoud (2015), which reflect local geographic character-
istics, within a quantitative spatial model will result in realistic population distributions,
extending the aspatial results of those papers to a spatial setting. Further, basing the ori-
gin of the population distribution on slow-changing geography can explain the persistence
and resilience of the city size distribution to negative shocks.7

The paper proceeds as follows. Section 2 argues that populations are best described by
5Adão et al. (2023) make a similar point, noting that modern spatial models are saturated with free

parameters such that they are always able to exactly match the underlying data.
6We also show that the exogenous locational fundamentals recovered in Allen and Arkolakis (2014)

appear lognormal, supporting our modeling of fundamentals as lognormally distributed. We discuss this
further in Section 3 and Supplemental Appendix C.8.

7Davis and Weinstein (2002) propose geography as a likely determinant of the population distribution,
given the recovery of the cities to their prior place in the population distribution following devastating
bombings.
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Figure I:
An Apparent Power Law for U.S. Cities in 2020
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Notes: The appearance of a power law for top 250 U.S. metropolitan statistical areas (MSAs) in 2020.
Data Source: U.S. Census

a lognormal distribution and establishes the link between this distribution and the appear-
ance of a power law for cities. Section 3 presents a standard quantitative spatial model and
shows that, given the structure of the equilibrium condition, a lognormal population dis-
tribution results from both trade across space and random variation in geography within
places. Section 4 demonstrates that the model captures several results in the empirical
literature on city size distributions via simulation. Section 5 concludes.

2 Seeing a Power Law in Populations

The appearance of a power law-like distribution for city populations is a well-documented
feature of human geography. As articulated in Gabaix (1999b), the regularity of its ap-
pearance across countries, the definition of a “city,” and time means it can reasonably be
held as a minimum criterion for a model of cities. This distribution is typically illustrated
with a simple plot and accompanying regression. For some truncation of the population
distribution to include only themost populous locations (“cities”), the plot of the log pop-
ulation rank of a city and the log population of the city often appears strikingly linear and
regression given by:

ln(city ranki) = θ0 + θ1 ln(city popi) + ϵi (1)

formany countries delivers a highR2 and frequently an estimate for θ1 near -1, as in Figure
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I for U.S. cities. This slope is characteristic of a specific power law referred to as Zipf’s Law,
which can be stated as the largest city in a given country being n times the size of the nth-
largest city. Interpreting this regression as describing the true city size distribution would
mean that city populations follow a Pareto distribution with shape parameter αP = 1 and
minimum city size xm, reflecting the choice of truncation point.8

Instead of being a true power law, the city size distributionmay result from cities being
a subset of a full population distribution which appears similar to a Pareto distribution for
tail observations. Eeckhout (2004) demonstrates that the full population distribution for
the U.S. appears lognormal. We construct an update to one of the key figures of Eeckhout
(2004) in Figure II, which shows that this continues to hold for the U.S. in 2010. The left
panel shows a histogram of log population, which closely matches the overlaid normal
distribution matching the mean and standard deviation of the empirical distribution, and
the right panel shows close fit to the normal distribution in a quantile-quantile (QQ) plot.
The tail of a lognormal distribution often appears similar to a Pareto distribution, which
can be understood by considering the lognormal PDF:

f(x) =
1

xσ
√
2π

exp

(
−(ln(x)− µ)2

2σ2

)
(2)

After some algebra (given in Supplemental Appendix A.1), this can be rewritten as:

f(x) = ΓLNx
−α(x)−1 (3)

where ΓLN = 1
σ
√
2π

exp
(
− µ2

2σ2

)
and α(x) = ln(x)−2µ

2σ2 . Contrast this with the density function
of a Pareto distribution:

j(x) = ΓP x
−αP−1 (4)

where ΓP = αPx
αP
m and the minimum city population is denoted xm. The lognormal PDF

in Equation 3 is similar to the Pareto density function in Equation 4, but with a scale-
varying “shape parameter”-like term. As Malevergne et al. (2011) show, provided the σ
parameter is not too small, the value α(x) takes in the right tail will be stable over much
of the tail distribution as α(x) grows logarithmically in x.

The Pareto interpretation of the tail of the population distribution appears dominant
in the literature despite its limitations and the strict assumptions it necessitates. First, the

8The estimate of θ1 = −1means the power law is such that for sizeX , the probability that a city is larger
than X is proportional to 1

X . A Pareto distribution with shape parameter αP = 1 and minimum city size
xm gives the necessary P (x > X) = xm

X , which is the Pareto counter-cumulative distribution function for
this αP . The link between the (log) rank-size plot and the Pareto distribution is established in more detail
in Gabaix (2009).
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Figure II:
Log Population, U.S. Census Places in 2020
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Notes: The left panel is a histogram of log population for U.S. incorporated places and census designated
places in 2020, with an overlaid normal distributionmatching themoments of the empirical log distribution.
The right panel shows a QQ plot of the (normalized) empirical population distribution against a standard
normal distribution. The fit of the log population to the normal distribution distribution means the popu-
lation distribution appears lognormal. This figure is an update to Figure 2 of Eeckhout (2004), which uses
data from the 2000 Census.
Data Source: U.S. Census

Pareto distribution is taken to apply to only a subset of large settlements and not the full
population distribution. This requires truncating a data series with no obvious trunca-
tion point. Early studies were limited to only the largest cities or settlements because of
the comparative ease of accessing population counts for the largest places.9 With more
complete data on population distributions, the choice of a truncation point to support the
Pareto interpretation becomes critical and there is no widely accepted method for deter-
mining such a cutoff. Many researchers rely on a visual test of the data to determine a
cutoff (Gabaix 2009). Second, beyond the need to truncate the data to fit a Pareto distribu-
tion, models generating a Pareto population distribution must rely on strong assumptions
regarding city growth dynamics. For example, Gabaix (1999b) obtains a Pareto distribu-
tion by assuming that cities cannot fall below a certain minimum size such that the oth-
erwise random growth process is “reflected” at the lower bound. Third, the systematic

9This is true of early work, such as Auerbach (1913) and Zipf (1949). While Auerbach had data on many
small settlements, a table in his paper includes just the 94 largest; see the recent translation in Auerbach and
Ciccone (2023). Evenmore recent investigation of Zipf’s Law in Krugman (1996), for instance, included just
the top 135 cities as the Statistical Abstract of the United States included only those cities (Eeckhout 2004).
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deviations of the far right tail below the Pareto distribution observed in many countries
(evident in Figure I for the U.S.) are very large in magnitude, which is obscured by the
log-log scale. In Supplemental Appendix B, we show that the estimated Pareto exponent
implies a cumulative absence of nearly 76million people from the 250 U.S. MSAs in Figure
I in expectation, roughly a quarter of the U.S. population.10

The lognormal interpretation’s attractive properties stand indirect contrast to the short-
comings of the Pareto. The lognormal distribution appears to fit both the body of the
population distribution as well as the right tail, obviating the need for arbitrary trunca-
tion. Further, the scale-varying “shape parameter”-like term of the lognormal (as shown
in Equation 3) can explain commonly observed deviations in real-world city size distribu-
tions. The likelihood of very large cities is lower when the true distribution is lognormal
than for a similar Pareto, because the scale-varying “shape parameter”-like term is increas-
ing in x. This appears to match the global city distribution (Rossi-Hansberg and Wright
2007), as the largest cities inmost countries tend to fall below the slope of the fitted regres-
sion line.11 Other features of real-world population distributions, such as the sensitivity
of the estimated slope to the choice of truncation point, are consistent with the lognormal
distribution as well.12

The appearance of a power law-like city population distribution is likely the result of
focusing on the tail of a lognormal full population distribution. Such an interpretation
requires fewer restrictive assumptions and appears to better fit the observed data, both
in the body of the population distribution (which is necessarily ignored by the Pareto
interpretation) and in the tail (which behaves more lognormal than Pareto).

10Alternative estimates of the power law based on different truncation points imply asmany as 500million
“missing” people in the largest U.S. MSAs, substantially more than the entire U.S. population, which we
discuss in Supplemental Appendix B.

11Proponents of the Pareto interpretation have attempted to accommodate this divergence by arguing that
the forces acting on small cities are different from those acting on large cities, generating different power laws
for different sizes of cities. A lognormal distribution naturally exhibits this deviation without the need to
treat subsets of the distribution differently. We provide a further discussion of the scale variance of the
lognormal distribution and its contrast with the Pareto distribution in Supplemental Appendix B.

12This property is discussed at length in Eeckhout (2004) and demonstrated in Supplemental Appendix
Figure A.II where we expand or reduce the number of cities relative to Figure I. The sensitivity to the trunca-
tion point and the lack of a reliable rule for truncating the distribution suggest that the frequently estimated
-1 exponent is unlikely to be ameaningful feature of the data. For some truncation of tail observations drawn
frommany lognormal distributions, the log-rank log-population plot will appear to take a slope of -1 as the
exponent in Equation 3 diverges smoothly.
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Figure III:
An Example Circular Geography
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Notes: An illustrative example of the circular geography we consider in the main text. Locations i ∈ N are
arrayed around a circle and trade occurs along the perimeter of the circle.

3 Lognormal Populations in Spatial Models

We now describe a canonical quantitative spatial model within which we demonstrate
our key result. We use a discretized version of the model in Allen and Arkolakis (2014),
which nests the canonical class of spatial models, and show that a realistic modeling of
geography and trade will lead to lognormal population distributions in equilibrium.13

3.1 A Quantitative Spatial EquilibriumModel

The world consists of locations indexed by i ∈ N , where N = {i | i ∈ N, 1 ≤ i ≤ N}.
The index i reflects each location’s position in a one-dimensional geography arranged as a
circle. An example of the geography is included in Figure III. We adopt a circular geogra-
phy here to simplify the exposition but we show in Supplemental Appendix A.5 that our
result generalizes to a two-dimensional Euclidean space.14

We assume that adjacent locations are evenly spaced at a distance of 1 around the cir-
cumference of the circle. The distance between any pair of locations i, n ∈ N , i ̸= n,
denoted δi,n, is the minimum distance around the circumference of the circle between the
two locations in either the clockwise or counterclockwise direction. Without loss of gen-

13TheAllen andArkolakis (2014)model is based on the two locationmodel presented inHelpman (1998),
generalized to an arbitrary number of locations.

14In our simulated results we also use a two-dimensional geography.
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erality, assume that i ≤ n. Then we can write the minimum distance traveled δi,n as

δi,n = min( n− i︸ ︷︷ ︸
clockwise

, N − n+ i︸ ︷︷ ︸
counterclockwise

). (5)

The distance between locations is important for accurately reflecting correlations across
space which often depend on distance. The similarities of locations nearby in space re-
flects the “first law of geography,” formulated by Tobler (1970) as “everything is related
to everything else, but near things are more related than distant things.”

Trade between locations is costly, and trade costs are related to but distinct from dis-
tance. Travel between adjacent locations incurs a cost ti, defined such that ti for i ∈
{1, 2, ..., N − 1} is the cost of traveling over the segment between i and i+ 1 and for i = N

is the cost of traveling over the segment between N and 1. All ti are strictly positive and
finite-valued random variables drawn from some common distribution, reflecting varia-
tion in geography whereby traversing some geographies is more difficult than traversing
others. The realized trade costs τi,n between any pair of locations i, n ∈ N , assuming
without loss of generality that i ≤ n, is the minimum trade cost when summing over the
realized travel costs around the circle in the clockwise and counterclockwise directions
between the two locations:

τi,n = 1 +min

(∑
j∈A

tj ,
∑
k∈B

tk

)
, A = {j|j ∈ N , j ∈ [i, n)}, B = {k|k ∈ N , k /∈ A}. (6)

This structure imposes symmetric iceberg trade costs such that τi,i = 1 for all i ∈ N ,
τs,t = τt,s, τs,t > 1 for s ̸= t, and ensures that trade costs between any pair of locations
s, t ∈ N are bounded above by a positive number. The circle geography ensures all lo-
cations face the same expected average trade costs. By construction, expected trade costs
between locations are increasing in distance but reflect a notion of “effective” distance rel-
evant for trade between locations rather than measured geographic distance relevant for
considering the similarity of nearby locations.

Each location has an exogenous productivity fundamentalAi and an exogenous amenity
fundamental Ui, both of which are strictly positive, real-valued random variables drawn
from some probability distribution. We discuss the fundamentals further later in this sec-
tion, where we argue that these should reflect variation in the geographic attributes of a
place and the spatial correlation patterns of attributes across space. A location’s effective
productivity and amenity value may also be affected by negative or positive externalities
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due to the local population Li. We define the “composite fundamentals” as:

Ãi = AiL
α
i (7)

Ũi = UiL
β
i (8)

where the typical case will consist of α > 0 and β < 0, reflecting positive productiv-
ity spillovers from agglomeration and the negative impact of overcrowding on amenities.
Geography within this model is represented by the set of functions defining the locational
fundamentals, Ãi and Ũi, along with the trade costs function τ defining the spatial rela-
tionship between locations in the model.

Wemake theArmington assumption that each location produces a differentiated good.
There is a population of homogeneous workers L̄ ∈ R++ who can freely move to any
location. Workers have common constant elasticity of substitution preferences over goods
in their welfare function given by:

Wi =

(∑
n∈N

q
σ−1
σ

n,i

) σ
σ−1

Ũi (9)

where Ũi is the composite amenity fundamental of location i and qn,i denotes the total
consumption in i of the goodproduced inn and σ > 1 governs the elasticity of substitution.

Production is perfectly competitive.15 Aworker in location i can produce Ãi units of the
local differentiated good, where Ãi is the composite productivity fundamental of location
i. The number of workers and wages in a location are given by the functions L : N → R++

and w : N → R++.16

Based on the CES assumption, we can write the amount of each good produced in any
location i consumed in location n as:

qi,n = Qn

(
pi,n
Pn

)−σ

(10)

where Qn is aggregate consumption in n, Qn = wnLn

Pn
, and Pn is the price index in location

n, given by:

Pn =

(∑
i∈N

p1−σ
i,n

) 1
1−σ

(11)

15Thismodel nests cases ofmonopolistic competition, as demonstrated in the appendix toAllen andArko-
lakis (2014).

16No location will be unpopulated or offer zero wages in equilibrium given the range of parameters we
consider.
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Given the assumption of perfect competition the price of the good produced in i consumed
in n, can be expressed as:

pi,n =
τi,nwi

Ãi

(12)

Combining the quantity (Equation 10) and price (Equation 12) expressions, we can write
the value of the good produced in i consumed by n as:

Xi,n =

(
τi,nwi

ÃiPn

)1−σ

wnLn (13)

By the CES assumption we can express the welfare of a worker in each location as:

Wi =
wi

Pi

Ũi (14)

The value of income in a location must be equal to the value of production:

wiLi =
∑
n∈N

Xi,n (15)

The labor market clears: ∑
n∈N

Ln = L̄ (16)

We can then combine the welfare expression (Equation 14), value of consumption expres-
sion (Equation 13), and income expression (Equation 15) to get:

Liw
σ
i =

∑
n∈N

W 1−σ
n τ 1−σ

i,n Ãσ−1
i Ũσ−1

n Lnw
σ
n (17)

Thewelfare expression (Equation 14) combinedwith the price index and andprices (Equa-
tions 11 and 12) yields:

w1−σ
i =

∑
n∈N

W 1−σ
i τ 1−σ

n,i Ã
σ−1
n Ũσ−1

i w1−σ
n (18)

Given the form of the externalities in Equations 7 and 8, free movement between locations
which ensures worker welfare is equal in all locations (Wi = W̄ for all i), and symmetric
trade costs we can combine Equations 17 and 18 into a single equation given by:

W̄ σ−1Lσ̃γ1
i = A

σ̃(σ−1)
i U σ̃σ

i

∑
n∈N

τ 1−σ
n,i U

σ̃(σ−1)
n Aσ̃σ

n

(
Lσ̃γ1
n

) γ2
γ1 (19)
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where:
σ̃ =

σ − 1

2σ − 1
, γ1 = 1− α(σ − 1)− βσ, γ2 = 1 + ασ + (σ − 1)β

The existence and uniqueness of the equilibrium, and a mechanism for finding it, are
established in Allen and Arkolakis (2014) when γ2

γ1
∈ (−1, 1] (the discrete case is con-

sidered in their online appendix). We focus on this part of the parameter space in our
simulated results, which occurs when α + β ≤ 0 and is the empirically relevant case, but
our result does not depend on this inequality. For any realization of fundamentals and
trade costs we thus can recover a unique vector of populations.

In the following subsections we demonstrate that the equilibrium population within
this model will be lognormally distributed given a realistic modeling of the fundamentals
and trade costs based on variation in geography. We begin by rewriting Equation 19 in
terms of the population in each location i in simplifying notation as:

Li = Ωi × (Si)
1

σ̃γ1 (20)

where Ωi =
(
W̄ 1−σA

σ̃(σ−1)
i U σ̃σ

i

) 1
σ̃γ1 , which we refer to as the “own-fundamental” term as

it consists only of location i’s fundamentals and the common positive constant W̄ , and
Si =

∑
n∈N sn,i with sn,i = τ 1−σ

n,i U
σ̃(σ−1)
n Aσ̃σ

n Lσ̃γ2
n , which we refer to as the “market access”

term of location i as it is a trade cost-weighted sum over all locations n ∈ N . Each term sn,i

of this summation represents the contribution of location n to themarket access of location
i.

We now demonstrate that, given a realistic modeling of variation in geography across
space and within a place, both of these terms will be lognormally distributed. This will
allow us to show that the equilibrium population also follows a lognormal distribution.

3.2 Variation over Space and the Distribution of Market Access

We first show that the distribution of the market access term, which is a summation over
positive random variables, converges in distribution to a lognormal. This result follows
from the application of a central limit theorem that allows for a particular type of depen-
dence structure across elements of the summation that is likely to hold in spatial contexts
and a useful lemma due to Marlow (1967) for sums of positive random variables.

The market access term for each location i given by Si =
∑

n∈N sn,i, consists of a sum-
mation over the random variables sn,i, each a function of the random variables τn,i, An,
Un, and Ln, for all n ∈ N .17 Many central limit theorems apply only to independent and

17In Supplemental Appendix A.4, we motivate the treatment of sn,i and Ln as random variables, because
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identically distributed random variables, but the sequences given by {sn,i} are unlikely to
consist of i.i.d. random variables. The fundamentals of a location are intended to reflect
its geographic advantages, as we argue in more detail in the following section, and as ge-
ography is similar for nearby locations the productivity and amenity fundamentalsAi and
Ui are unlikely to be independent for nearby locations. Further, a location near a highly
populous city will (provided trade costs are not prohibitive) benefit from access to the
market of its neighbor such that the populations Li of nearby locations are also unlikely
to be independent. Lastly, trade costs between any i to any two other adjacent locations
j, j + 1, τj,i and τj+1,i, will tend to be similar by construction as they differ by at most tj ,
the trade cost of traversing the additional interval between j and j + 1.

Despite the potential for correlations among nearby locations, we argue that over long
distances the fundamentals, populations, and trade costs should approach independence.
Nearby locations often have broadly similar geographic attributes, like the climatic sim-
ilarities of New York City and northern New Jersey, but this spatial correlation declines
with distance such that New York City is quite dissimilar from both Monterrey, Mexico,
and Nuuk, Greenland.18 As such, we assume that while fundamentals may be similar for
nearby locations they may also differ substantially over greater distances. Trade costs be-
tween i and any pair of locations j, k ̸= i, given by τj,i and τk,i, may also differ substantially
when the distance between k and j is large since trade costs are not a pure function of dis-
tance but rather reflect randomvariation in the difficulty of travel. Ruggedmountainsmay
separate some nearby locations while other distant locations have gentle plains between
them. As such, it is possible that while δj,i < δk,i such that i is closer geographically to j
than to k, travel from i to k occurs clockwise around the circular geography and is, due
to random variation in trade costs, substantially easier than travel in the counterclockwise
direction from i to j such that τj,i ≫ τk,i. Given independence in fundamentals and trade
costs over long distances, the distribution of population can also be reasonably assumed
to approach independence as distance increases. As such, for each i the realizations of sj,i
and sk,i, for locations j, k ∈ N are likely to near independence as distance between j and
k increases.

Many modern central limit theorems allow for precisely this type of asymptotic in-
dependence. The formal assumption we must impose in order to apply a central limit
theorem is that the sequences must be α-mixing for each i ∈ N .19 A formal definition of
α-mixing for sequences is given in Supplemental Appendix A.3. The concept requires that

each Ln is an element of a random sequence corresponding to the eigenvector of a random matrix.
18Nuuk and Monterrey are roughly equidistant from New York City, both at a distance of 1,850 miles.
19This concept is also referred to as “strong mixing” or “weak dependence.”
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all events defined on arbitrary subsets of an α-mixing sequence approach independence
as the “distance” between the subsets increases, where distance is reflected in the index
of the sets. This concept is often used in the analysis of time series, where the index re-
flects the timing of the observation and imposes a natural concept of the distance between
elements of the sequence.

In our setting, we also have a natural concept of distance, dn,i. We can re-index the
elements of the sequence {sn,i} in terms of distance by defining for each i an alternative
sequence ordered by distance from i, {sdj,i}, where sd1,i = si,i (at a distance of 0) is followed
by sd2,i = si+1,i, sd3,i = si−1,i (both at a distance of 1), and so on.20 Note that as the sequences
{sdj,i} are simply a re-indexing of the sequences {sn,i}, Si =

∑
n∈N sn,i =

∑
j∈N sdj,i for all

i ∈ N . We assume that the sequences {sdj,i} are α-mixing for all i ∈ N to reflect asymptotic
independence with respect to distance.

Lemma 1 is a central limit theorem for α-mixing sequences due to Herrndorf (1984),
introduced to the spatial economics literature by Lee and Li (2013). It allows us to demon-
strate convergence of a sum over a sequence of non-i.i.d random variables to a normal dis-
tribution, provided asymptotic independence (α-mixing) and other moment conditions
for the sequence.

Lemma 1 (Herrndorf 1984): Let {xi} be an α-mixing sequence of random variables satisfying
the following conditions:

i. E[xi] = 0,∀i

ii. limn→∞
E[(

∑n
i=1 xi)

2]
n

= σ̄2, 0 < σ̄2 <∞

iii. supi∈N E[xbi ] <∞, for some b > 2

iv.
∑∞

s=1(αs)
1− 2

b <∞

Let Xn =
∑n

i=1 xi. Then as n → ∞, 1√
nσ̄
Xn converges in distribution to the standard normal

distribution.

The proof of Lemma 1 is given in Herrndorf (1984), and discussion of the conditions
is given in Lee and Li (2013). Lemma 1 allows us to apply a central limit theorem to the
sums Si for all i ∈ N , provided the sequences {sdn,i} fulfill the requirements of the lemma.

An additional property of the summations Si allows us to move from a central limit
theorem in levels to one in logs, which will allow us to characterize the distribution of
Si as lognormal. Each sn,i must be strictly positive, as An, Un, τn,i, and Ln are all strictly
positive and so sn,i = τ 1−σ

n,i U
σ̃(σ−1)
n Aσ̃σ

n Lσ̃γ2
n > 0. This allows us to apply a useful lemma

20Given that N is adjacent to 1 in the indexing within the circular geography, when considering i = 1 the
value for i− 1 will be equal to N .
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from Marlow (1967), which provides conditions under which a lognormal distribution
may appear from a summation of positive random variables:

Lemma 2 (Marlow 1967): Let {Xn} be a sequence of positive random variables. Suppose there
exist sequences of positive real numbers {an} and {bn}, and a distribution F such that

i. At each point of continuity of F , limn→∞ P
{

Xn−an
bn

≤ x
}
= F (x)

ii. limn→∞

(
bn
an

)
= 0

Then at each point of continuity of F , limn→∞ P
{(

an
bn

)
ln
(

Xn

an

)
≤ x

}
= F (x)

The proof of Lemma 2 is given inMarlow (1967). Condition (i) can reflect convergence
under a central limit theorem (such as Lemma 1), where F (x) is the standard normal
distribution and the sequences an and bn are the mean and standard deviation of some
Xn resulting from a sum of random variables. Condition (ii) then necessitates that the
coefficient of variation (the ratio of the standard deviation to the mean) of Xn is zero in
the limit as n grows large. Many sums of positive randomvariables fulfill this requirement
and examples are given in Supplemental Appendix A.2.

For a sum that satisfies the conditions for a central limit theorem and condition (ii),
Lemma 2 states that the given normalization of the sum will converge in distribution to a
lognormal random variable.21 Lemma 2 is crucial for understanding the population dis-
tribution within many spatial equilibrium models, as these models often incorporate a
notion of “market access” via a trade cost-weighted sum over all locations. All of the el-
ements of these sums must be strictly positive, and provided these fulfill the conditions
necessary for applying a central limit theoremandLemma 2 the distribution of these “mar-
ket access” termswill approach a lognormal distribution as the number of locations grows
large. We state this result in Proposition 1.

Proposition 1: For each i ∈ N , define the sequences {sd1,i, sd2,i, ...sdN,i} and the demeaned sequences
{ŝdn,i} such that E[ŝdn,i] = 0 for all n ∈ N . Define S(N)

i =
∑N

n=1 s
d
n,i,M

(N)
i =

∑N
n=1 E[sdn,i], and

σ
(
S
(N)
i

)2
= V ar[S

(N)
i ]. If, for all i,

i. The sequences {ŝd1,i, ŝd2,1, ...ŝdN,i} are α-mixing and fulfill the conditions in Lemma 1

ii. The coefficients of variation associated with the sequences {S(1)
i , S

(2)
i , ..., S

(N)
i } fulfill condi-

tion (ii) of Lemma 2 as N → ∞
21We discuss Lemma 2 further in Supplemental Appendix A.2. Beyond the context in which we apply the

Marlow (1967) lemma, it appears to have broad usefulness within economics. For example, a CES aggrega-
tor over positive random variables fulfilling the conditions of the lemma should approach lognormality as
the lognormal distribution is preserved over exponentiation.
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then the distribution of M
(N)
i√

Nσ
(
S
(N)
i

) ln
(

S
(N)
i

M
(N)
i

)
converges in distribution to a normal for all i as

N → ∞.

The proof follows directly from Lemma 1 and Lemma 2. Lemma 1 allow us to apply
an α-mixing central limit theorem to the sum Si, and Lemma 2 allows us to move to a
central limit theorem in logs as all elements of this sum are positive.22 If the necessary
assumptions on sn,i hold, the market access summation Si converges in distribution to a
lognormal asN grows large. We assumeSi is lognormally distributed for some sufficiently
large N and as a lognormal raised to a power results in another lognormal distribution
each (Si)

1
σ̃γ1 will also be lognormally distributed.

3.3 Variation within Place and the Distribution of Fundamentals

Wenow turn tomodelling the distribution of fundamentals, and begin by noting that these
are intended to reflect differences in the suitability of a place for habitation or settlement.
There is clear evidence for observable geographic attributes, alone and in combination,
playing a role in shaping human settlement patterns (Henderson et al. 2018). The substan-
tial differences between areas of high population in terms of many geographic attributes
suggests that no one particular observable attribute alone is a sufficient proxy for what
makes a location good for human habitation, and that many attributes should contribute
to the quality of a place.

Wemodel fundamentals as resulting from random shocks via the geographic attributes
of a location, building on the approach of Lee and Li (2013) who similarly model a loca-
tion’s quality as resulting from many random “factors.” Using random variation in geog-
raphy to model locational fundamentals is the cross-sectional analog of random growth
models based onGibrat’s law over time, like those of Gabaix (1999a) and Eeckhout (2004),
where rather than productivity shocks occurring over time each attributewithin a location
contributes a productivity or amenity shock to the respective fundamental.

Each location i has many geographic attributes aig, which are indexed by g ∈ G, where
G = {g | g ∈ N, 1 ≤ g ≤ G}. Attributes for a productive location could be fertile soil,
regular and mild weather patterns, and favorable topography, among many others. We
assume all attributes are strictly positive in value and for any g, higher values of aig reflect
better realizations of that attribute.23 We also assume each individual attribute is drawn

22Interestingly, an implication of Proposition 1 is that the distribution of Si should appear normal in both
levels and logs. We discuss this further in Section 4 and show that this does indeed hold in Supplemental
Appendix D.2.

23These should not be thought of as being measured in the familiar units for each attribute. Rainfall
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from a common distribution in all locations, while different attributes may differ in their
respective distribution.

For brevity we focus our discussion on productivity fundamentals before returning
to consider the similarly constructed amenity fundamentals. The locational productivity
fundamental for a location i, denoted Ai, should be a function of its many attributes such
that Ai = FA(ai1, ai2, ..., aiG). This function should be increasing in each aig, to reflect that
better attributes increase productivity, such that ∂FA

∂aig
> 0 for all g ∈ G. Further, the ag-

gregating function should exhibit complementarities between each of the attributes. That
is, the benefit of having reliable rainfall for production is increased when there is better
arable land in a location, for instance. This means the aggregating function also needs a
positive cross-partial for all arbitrary combinations of attributes, such that ∂2FA(·)

∂aij∂aig
> 0, for

j, g ∈ G, j ̸= g.
Consistent with these assumptions, we can view the contribution of attributes to the

fundamental as representing multiplicative shocks. We assume a Cobb-Douglas form for
the aggregating function FA, consistent with the requirements outlined above. The vary-
ing importance of different attributes can be reflected by the exponents ξg > 0 associated
with each g:24

Ai =
∏
g∈G

aig
ξg (21)

Taking the natural log yields the following expression:

ln(Ai) =
∑
g∈G

ξg ln aig (22)

where we express the logged fundamental in location i as a sum of random variables
ξg ln aig.

It is possible that some attributes aig are not independent within locations. For exam-
ple, high July temperatures and the number of growing days may be correlated within
places such that knowing the realization of one is informative about the likely values of
the other. However, over the large number of attributes of a place there do appear to ex-
ist pairs of attributes which appear nearly independent within locations (e.g., topography
and rainfall), as we demonstrate in Supplemental Appendix C.4 using data on geographic
attributes from Henderson et al. (2018).

in inches has a nonlinear relationship with agricultural output, for instance. We instead want a measure
reflecting how positive the “shock” from a given attribute is.

24We could also include an index for the time t, to allow for attributes aigt to vary over time and to vary in
their importance over time ξgt, which could capture structural transformation of the economy or changing
production technologies at time t. In this case, Ait =

∏
g∈G aigt

ξgt where the fundamentals can vary with t.
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Consistent with this we assume that attributes are α-mixing within locations, as in Lee
and Li (2013). We define the ordering of the sequence of attributes {ai1, ai2, ..., aiG} such
that similar attributes are close together (July temperatures and growing days have indices
near each other), while independent attributes differ greatly in their index values (rainfall
and topography have indices set far apart). Together with further restrictions, given in
Lemma 1, on themoments of the randomvariables ξg ln aig and the rate ofα-mixing, which
determines how rapidly the elements of the sequence approach independence, we apply
the central limit theorem in Lemma 1 to characterize the distribution of each lnAi.

Proposition 2: Define ◊�ξg ln aig = ξg ln aig − E[ξg ln aig] for all g ∈ G and i ∈ N , and define‘lnAi =
∑

g∈G
◊�ξg ln aig and σ

(‘lnAi

)2
= V ar[‘lnAi] for all i ∈ N . If the sequences {◊�ξg ln aig} are

α-mixing and fulfill the conditions of Lemma 1 for all i ∈ N , then as G → ∞, 1√
Gσ(’lnAi)

‘lnAi

converges in distribution to the standard normal distribution for all i ∈ N .

Proposition 2 follows from Lemma 1. By Proposition 2, as the number of attributes
grows large, the log productivity fundamental lnAi will converge in distribution to a nor-
mal distribution and so Ai will converge in distribution to a lognormal distribution. We
assume that, for a large number of attributes, Ai will be lognormally distributed based on
this asymptotic argument.

The amenity fundamental is defined similarly, but we allow for different weights as the
attributes most relevant for determining quality of life may differ from those influencing
productivity. The log of the amenity fundamental, which has weights given by ιg > 0, is:

ln(Ui) =
∑
g∈G

ιg ln aig (23)

and, given the same conditions as on the productivity fundamental, will also converge in
distribution to a lognormal as the number of attributes grows large.

We provide support for the appearance of a lognormal distribution for fundamentals
in two ways. First, the fundamentals recovered by inverting the model in Allen and Arko-
lakis (2014), plotted in Supplemental Appendix C.6, appear lognormal for U.S. counties.
Second, we use the Henderson et al. (2018) data on attributes and, following our model-
ing assumptions, calculate a “naive” fundamental by applying our aggregating function.25

The plots are reported in Supplemental Appendix C.6, and show that aggregating the
eleven attributes results in a distribution of fundamentals that appears lognormal. While

25We say the fundamental is “naive” in the sense that we do not know the appropriate weights or scaling
of the attributes. The construction of the fundamental is discussed in Supplemental Appendix C.5. A similar
exercise was earlier done by Behrens and Robert-Nicoud (2015) for U.S. MSAs.
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only suggestive, both the strategy of recovering fundamentals within a structural model
based on true populations and the construction of a “naive” fundamental from attributes
result in strikingly lognormal distributions.

Given lognormally distributed productivity and amenity fundamentals Ai and Ui, we
can show that the “own-fundamental” term Ωi for each location i will be lognormally
distributed.

Proposition 3: If Ai and Ui have a bivariate normal distribution in logs, Ωi will be lognormally
distributed.

Proposition 3 follows immediately from the properties of lognormals, as either raising
a lognormal distribution to a power or multiplying by a positive constant begets another
lognormally distributed random variable and multiplying two lognormal random vari-
ableswhich have a bivariate normal distribution in logs also results in another lognormally
distributed random variable.

We now consider the spatial distribution of geographic attributes and the implica-
tions for the resulting fundamentals, formalizing the discussion in the prior section on
the distribution of the exogenous productivity and amenity fundamentals across space.
Geographic attributes tend to be correlated across space and nearby locations often have
similar topography, rainfall, soil quality, and so on, but as the distance between locations
increases the similarity of attributes across locations declines. In Supplemental Appendix
C.4 we provide evidence for this pattern of spatial correlations based on the attributes
data in Henderson et al. (2018). This pattern of declining similarity with respect to dis-
tance is consistent with modeling geographic attributes as being α-mixing with respect to
distance.26

In our simplified circle geography, we assume that the sequences {Ai} and {Ui} are
α-mixing with respect to distance to reflect the patterns of correlation in geographic at-
tributes across space.27 This assumption captures the potential similarity of nearby lo-
cations and how this similarity vanishes with increasing distance, and is consistent with
the argument for α-mixing of the elements of the market access summation in the prior

26The concept of α-mixing can be extended to two-dimension spaces, like that of the geographic data,
and we provide the definition for α-mixing of random fields in Supplemental Appendix A.3. The compli-
cation involves the need to introduce a concept of distance when this information is not directly encoded
in the series index. All of our proofs can be generalized to two dimensional geographies, as we show in
Supplemental Appendix A.5.

27If geographic attributes were independent sequences the α-mixing of {Ai} and {Ui} would follow di-
rectly from Theorem 5.2 of Bradley (2005) and α-mixing of attributes with respect to distance. However, as
many attributes are likely not independent, we must assume α-mixing of the fundamentals with respect to
distance
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section.28

3.4 The Distribution of Population

We have now shown that Ωi and (Si)
1

σ̃γ1 are lognormally distributed when realistically
modeled to reflect variation in geography and trade costs over space. Using this, we can
then show that the population will be lognormally distributed as population in each loca-
tion i is given by Li = Ωi(Si)

1
σ̃γ1 . This result is given in Theorem 1.

Theorem 1: If Ωi and S
1

σ̃γ1
i have a bivariate normal distribution in logs for all i ∈ N , then Li

follows a lognormal distribution for all i ∈ N .

The proof follows directly from the lognormality of Ωi and S
1

σ̃γ1
i , and the property that

products of lognormal distributions which have a bivariate normal distribution in logs
also follow a lognormal distribution.

For the realized population distribution to appear lognormal we further require that
populations are not too correlated across locations. While we have proven that the dis-
tribution of the population in each i approaches a lognormal, it is possible that the equi-
librium population is highly correlated such that the full probability distribution is not
realized. We need to demonstrate that the population distribution is also α-mixing, which
will ensure that due to the asymptotic independence of the population over space the re-
alized population distribution will reflect the lognormality of the underlying distribution
for large N .29

Proposition 4: If {Ai} and {Ui} are α-mixing and independent sequences, then {Ωi} is an α-
mixing sequence.

The proof follows directly from Theorem 5.2 of Bradley (2005), as α-mixing is main-
tained over measurable transformations and over combinations of independent α-mixing
random sequences.30 Wemust make the stronger assumption that Ai and Ui are indepen-
dent, but given α-mixing of these sequences independence establishes that {Ωi} will also
be α-mixing.31

28Wefind that the correlation of the constructed “naive” fundamentals across space declines with increas-
ing distance, as shown in in Supplemental Appendix C.6, consistent with the assumption of α-mixing.

29The stronger concept of α-mixing implies ergodicity (Frigg et al. 2020). An ergodic process will visit all
parts of the probability space associated with the process given large N .

30In Supplemental Appendix A.3 and A.5, we extend Theorem 5.2 of Bradley (2005) from random se-
quences to random fields in two-dimensional space.

31This assumption is necessary for the application of Theorem 5.2 of Bradley (2005) in the proof of Propo-
sition 3, but we will relax this assumption in our simulations and show that it does not appear necessary for
the result. Allen and Arkolakis (2014) find a low, but non-zero, correlation of 0.12 between Ai and Ui.
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We can then show that the population sequence {Li}will be α-mixing as well, given an
additional assumption that the market access terms Si are also α-mixing. This will ensure
that the full probability space of the population distribution will be realized for large N .

Theorem 2: If {Ωi} and {Si} are independent α-mixing sequences, then the population sequence
{Li} is α-mixing.

The proof also follows directly from Theorem 5.2 of Bradley (2005). In Supplemental
Appendix A.5 we show that these α-mixing properties and proofs for sequences can be
generalized to two-dimensional α-mixing fields and will also hold for more realistic ge-
ographies. The α-mixing of the population within the model is consistent with real-world
population distributions, as large population centers tend to be surrounded by other pop-
ulous areas rather than sparsely populated regions.32 The α-mixing of the population
also implies that the very largest cities will not cluster together despite the correlations in
population, because the population of different locations will approach independence as
distance increases.

4 Results

We now demonstrate that the model successfully generates lognormal population distri-
butions and power law-like city size distributions via simulation. We provide comparative
statics based on varying parameter values across simulations to document how changes
in congestion, spillovers, and trade costs influence the observed power law. We identify
changes to the power law in the directions implied by the empirical literature. Finally, we
show that Gibrat’s law holds within the model when the aggregate population increases,
showing that size-invariant growth is a feature of a lognormal equilibrium population dis-
tribution based on variation in geography and trade, in contrast to earlier literature that
took random growth to be the basis for lognormal populations.

32There is a literature on urban shadows which suggests that new cities tend not to form immediately
next to existing cities, and which appears to be in tension with the correlation of the population distribution
across space. One example of this literature is Bosker and Buringh (2017), which documents a “shadow”
surrounding cities in Europe from 800-1800. This shadow is ascribed to forces beyond our model, such as
the risk of armed conflict between cities, and results within Bosker and Buringh (2017) still demonstrate a
high degree of spatial correlation in the population distribution (see, for example, their Figure 4). Related
work on urban growth shadows, as in Cuberes et al. (2021) find that the growth of peripheral regions near
large urban centers is influenced by the central city, with locations near urban centers tending to grow faster
over the past century, which is also consistent with spatial correlation in populations.
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4.1 Simulation of the Population Distribution

We first simulate the model to demonstrate that the resulting populations are indeed log-
normally distributed and that the city size distribution appears to follow a power law. We
simulate the results within a two dimensional geography. Each location in the model is
a place that can host a settlement.33 Note that the definition of a “location” is not spec-
ified by the model, beyond being a place within which local spillovers occur, and these
could either be large regions or small locales.34 We define the most populous 5% of lo-
cations as “cities” within the model, to demonstrate that the tail behavior of the resulting
population distributionmirrors the appearance of a power law in empirical city size distri-
butions. To ensure dispersion in trade costs while remaining consistent with the triangle
inequality and maintaining symmetry, we model settlements as occurring randomly over
a large surface and take the Euclidean distance between all settlements.35 We simulate a
large geography and take the central locations as the geography of interest to limit the im-
pact of border effects on the population distribution. We are left with a central geography
consisting of approximately 20,000 settlements.36

We take model parameters from the literature and from Allen and Arkolakis (2014)
where possible. We first create randomly-generated draws of exogenous productivity and
amenity fundamentals with declining spatial correlation. Fundamentals are drawn from
lognormal distributions with parameters σLN = 1 and µLN = 0, and we induce spatial cor-
relation in the fundamentals using a Choleski decomposition.37 We allow the productivity
and amenity fundamentals in a location to be correlated and set the correlation betweenAi

and Ui within each location i to ρAU = 0.12 to match the correlation between the recovered
productivity and amenity fundamentals in Allen and Arkolakis (2014).

33This interpretation matches that in Redding and Rossi-Hansberg (2017), which frames locations as re-
gions which can potentially hold a single settlement.

34That the model is ambiguous on the level of aggregation of population means it is consistent with the
observation of the characteristic population distribution at varying levels of aggregation, as in Holmes and
Lee (2010), Rozenfeld et al. (2011), and Mori et al. (2020). Spillovers are unlikely to be purely local at
any level of aggregation, and so differing levels of aggregation may require different parameters governing
“local” spillovers that are a useful abstraction from more complex patterns of spillovers.

35An example of a portion of this “dartboard” geography can be seen in Supplemental Appendix D.1. We
could alternatively model trade costs as having an idiosyncratic component to ensure dispersion, and not
respect the triangle inequality or symmetry. We choose the more restrictive setting without an idiosyncratic
component for our main results to demonstrate that only a limited degree of dispersion is necessary. We
simulate with additional idiosyncratic shocks to trade costs in Supplemental Appendix D.4.

36We uniformly distribute 30,000 settlements across a 1200-by-1200 grid and discard those within 100
cells of a border. This leaves an expected number of settlements of 100

144 ∗ 30000 = 20, 833.3̄. We draw new
randomly drawn fundamentals each simulation.

37We assume the degree of spatial correlation of the log-scale fundamental declines exponentially, consis-
tent with the empirical attribute correlations we show in Supplemental Appendix C.6, so that ρij = e−δρdij .
For j = i, this gives ρii = 1 as dii = 0. We set δρ = 0.5.
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The magnitude of local productivity spillovers is given by α = 0.03, in line with the
estimates in Combes et al. (2008) and those surveyed in Rosenthal and Strange (2004)
and Combes and Gobillon (2015).The model contains an isomorphism which we use to
parameterize congestion costs. As discussed in Allen and Arkolakis (2014), the model is
isomorphic to one with a fixed quantity of housing where spending on housing is δ and
β = − δ

1−δ
. Congestion costs are parameterized to match a level of spending on housing

of 25% of income, which gives a congestion parameter of β = −1
3
, consistent with the esti-

mates in Combes et al. (2019) and Davis and Ortalo-Magné (2011). We model trade costs
as an exponential function of distance, τij = eδTCdij and set δTC = 0.001.38 We vary these
parameters in Supplemental Appendix D.3. We set the elasticity of substitution σ = 5, as
in Redding and Rossi-Hansberg (2017) and consistent with the estimates in Simonovska
and Waugh (2014).

Figure IV shows the equilibrium population distribution associated with a random
draw of productivity and amenity fundamentals and trade costs.39 The log of the popu-
lation distribution very closely matches the overlaid normal distribution, demonstrating
lognormality. The upper-right panel shows a quantile-quantile (QQ) plot of the log popu-
lation and a normal distribution, demonstrating very close fit throughout the full distribu-
tion. The output in the upper panels is very similar to Figure II for the full U.S. population
distribution. Given the lognormality of the population distributions, the most populated
locations in our model will appear to follow a power law distribution as demonstrated in
Section 2. Concentrating only on the most populated 5% of locations, in the bottom panel
of Figure IV we find the model generates power law-like city size population distributions
like those commonly identified in the data. Indeed, this panel is similar to Figure I for
U.S. cities and the log rank-size regression on this simulated data gives a slope of -0.977,
close to the classic Zipf’s Law result of a slope of -1 for this particular random draw of
fundamentals.

In Supplemental Appendix D.2, we also check that the summation term Si behaves
as predicted by Proposition 1 and the conditions in Theorem 2 which imply that this
term should appear normal in both levels and logs and be independent from the own-
lognormal term for each location. We find evidence that both of these predictions hold
within our simulations. When we induce further idiosyncratic variation in trade costs in

38Allen andArkolakis (2014) estimate a value of δ = 0.56 for road travel when thewidth of the continental
U.S. is normalized to 1, given an elasticity parameter of σ = 9. The geography we simulate has a width of
1000 and we use σ = 5. The difference in the normalized distance and the necessary re-scaling due to
changing the elasticity of substitution imply a scaled parameter of 0.00112, near the value we choose.

39Whenever we present a single random draw, we present the first draw using our seed value. Our seed
value is the four-digit catalog number of Columbia Economics Professor Serena Ng’s graduate macroecono-
metrics course.
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Figure IV:
Example of the Equilibrium Population Distribution
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Notes: The top left panel shows the model’s log population appears to follow a normal distribution. The
top right panel contains a QQ plot of the model’s log population distribution, indicating that it very closely
matches a normal distribution. The log rank-size plot at the bottom shows a strong resemblance to the
typical log rank-size plot for cities along with the characteristic divergence of the largest locations below the
trendline.

Supplemental Appendix D.4 the fit of Si to the normal distribution in both levels and in
logs improves, consistent with the importance of dispersion in trade costs for the distribu-
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Figure V:
Smoothed Output Over 1000 Simulations
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1000-draw MC Value

Coef. of Avg. -.954

Avg. over Coefs -.952
Std. Dev. (.033)

Min -1.052
5pct -1.007
25pct -.976
50pct -.952
75pct -.931
95pct -.895
Max -.855

Notes: The smoothed population distribution resulting from 1000 simulations of model is in the upper left
panel, and the resulting QQ plot is on the upper right. Both show that the equilibrium population distri-
bution appears lognormal. The city size distributions from the 1000 simulations are in the lower left, and
statistics over model simulations the lower right. The slope on the lower left represents the slope taken
over the average of log(pop) at each rank over 1000 simulations, and the bounds contain 95% of the log
populations at each rank of the distribution. The table displays statistics over the 1000 estimated power law
coefficients from the simulations.
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Table I: Normality Tests

Kolmogorov-Smirnov Lilliefors Jarque-Bera
Rejected at 1% 0.000 0.022 0.171
Rejected at 5% 0.001 0.103 0.353

Notes: Table shows the share of tests for a normal distribution rejected for the log equilibrium population of
1000 simulations.

tion of market access.
We next demonstrate the robustness of the lognormal population distribution by per-

forming 1000 simulations, each time drawing a new randomly generated distribution of
fundamentals. Figure V displays smoothed results over 1000 simulations of the model.40

The QQ plot also demonstrates lognormality of the expected log population over these
simulations. We verify the robustness of the power law coefficient estimate across the sim-
ulations, with an average coefficient across the 1000 simulations of -0.95, with a standard
deviation of 0.03. 90% of estimated coefficients are between -0.900 and -1.004. Perform-
ing the (log) rank-size regression on the smoothed distribution delivers a slope of -0.95.
The parameter values used here are consistent with the literature and estimates are near
the Zipf’s Law of -1 for all simulated values. While the model using standard parameters
from the literature closely approximates the Zipf’s Law coefficient of -1, we maintain our
argument that the -1 coefficient is not a meaningful feature of the data. Changes in scale
and the truncation point can influence the estimate, as discussed in Section 2 and Sup-
plemental Appendix B. Nonetheless, it is interesting to note that the estimated power law
exponent appears consistent with Zipf’s Law for typical parameter values in the literature.

We test each of the 1000 simulated population distributions against the null hypothe-
sis that the logged population distribution is normally distributed using the Kolmogorov-
Smirnov, Lilliefors, and Jarque-Bera tests. The results of these tests are given in Table I.
None of the tests reliably reject the normal distribution for the logged population. Rejec-
tions of normality occur most often under the Jarque-Bera test, which tests for skewness
and kurtosis.41 A degree of kurtosis is evident in the QQ plot as both tails appear slightly
heavier than a normal distribution, which may be attributable to the finite grid.

40The log of population is averaged at each rank of the distribution over the 1000 simulations. Results are
similar when averaging the population and taking the log.

41The higher rejections under the Jarque-Bera test may also be attributable to the inappropriateness of this
test for spatial data, similar to its inappropriateness for time series data documented in Bai and Ng (2005).
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Table II: Comparative Statics

∂θ1
∂α

∂θ1
∂β

∂θ1
∂δTC

Sign of change + + +

Notes: Direction of the change in slope coefficient in the (log) rank-size regression for changes in α, β, and
δTC , holding other parameters constant. “+”means the estimated slope (which is negative by construction)
has become flatter. This implies that the largest large cities are relatively bigger. Note that β < 0, so an
increase in β means a decrease in congestion. The signs are from a regression of the parameters on the
estimated coefficients (discussed in Supplemental Appendix D.3)

4.2 Comparative Statics Across Simulations

Wenext simulate the comparative statics of the estimated power law coefficient for the city
size distribution, testing its sensitivity to changes in model parameters. Changing param-
eters alters the estimated coefficient of the log rank-size regression, which we denote θ1 as
in Equation 1. We perform 100 simulations for each of 150 combination of parameters.42

A summary of the signs of changes (estimated by a regression given in Supplemental
Appendix D.3) is provided in Table II.

The comparative statics of our model demonstrate changes in the estimated power law
coefficient in line with the empirical evidence. Increasing the benefits of agglomeration
by raising α > 0 results in a more unequal city size distribution (greater dispersion, or
a flatter slope) and increasing local congestion costs by reducing β < 0 results in a more
equal distribution (less dispersion, or a steeper slope). Increasing trade costs by increas-
ing the rate at which these costs grow with distance, δTC > 0, likewise results in a more
unequal city size distribution. In many developing countries, the city size distributions
are highly unequal, generating the flatter slopes in the log-log regression documented in
Duben and Krause (2021). These unequal city size distributions be attributable to high
domestic transportation costs, which are often substantially higher in developing than in
developed countries. Atkin and Donaldson (2015) estimate that domestic trade costs are
roughly four to five times higher in Nigeria and Ethiopia than in the U.S., in line with the
empirical evidence documented in Teravaninthorn and Gaël (2009). These high domestic
trade costs could contribute to the phenomenon of very large metropolises relative to sec-
ondary cities (“primate cities”) within the developing world. Additionally, the flattening
slope in the U.S. in recent decades, documented in Gabaix and Ioannides (2004), could be

42We simulate for 5 values of α, 6 values of β, and 5 values of δTC given in Supplemental Appendix D.3.
The geography has the same dimensions as our baseline simulations but we change the number of locations
in the full geography to 10000 to reduce computation time.
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a result of increased agglomeration benefits in the modern services economy.

4.3 Gibrat’s Law

Allen andArkolakis (2014) demonstrate that the population vector is scaled by changes in
the aggregate population, but the relative populations over locations are not changed by
changes in the total population. We nowdemonstrate that based on this property the equi-
librium population distribution demonstrates proportional growth and satisfies Gibrat’s
law in response to increases in the aggregate population L̄. We can write Equation 31, the
matrix form representation of Equation 19 as:

h̃ = J ˜[h]
γ2
γ1

where h̃i′ = hi′W̄
σ−1

1− γ2
γ1 , the notation [·]a indicates raising each element of the vector to the

power a, and the matrix J is given in Supplemental Appendix A.4. As this relationship
must hold for any level of L̄, changing L̄ does not impact the resulting population distri-
bution even as it impacts welfare (W̄ , which is the same across all locations). That is, a
percentage increase in overall populationwill result in each location experiencing popula-
tion growth of the same percentage. As a result, population growth rates will be unrelated
to initial population and Gibrat’s law will hold within the equilibrium of this model.

This is a key difference between our explanation for observed population distributions
based on locational fundamentals and trade and the prior literature on random growth
models. Rather than being the force creating the equilibriumdistribution, random growth
is a feature of an equilibrium based on the underlying characteristics of place and trade.
This view is supported by the absence of Gibrat’s law in systems that are in transition or
have suffered dis-equilibrating shocks (Desmet and Rappaport 2017; Davis andWeinstein
2002, 2008).

5 Conclusion

The power law-like distribution of city populations is a striking empirical regularity that
holds across countries and over millennia. In this paper, we demonstrate that a broad
class of economic geographymodels generate these characteristic population distributions
whenmodeledwith a realistic geography. We integrate insights fromeconomic geography
theory regarding the importance of both the qualities of a location and its market access
for its population into the extensive literature on power law-like population distributions
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and Zipf’s Law. Viewing population distributions as arising naturally in response to fa-
vorable geography and trade access provides a simple explanation for the emergence of
the distinctive city size distribution. This explanation is consistent with the persistence of
human settlements, the recovery of cities from disasters, and the random growth of cities
in equilibrium.
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SUPPLEMENTAL APPENDIX
for “Populations in Spatial Equilibrium”
Matthew Easton and Patrick W. Farrell

A Discussion of Main Text Results and Proofs

A.1 Algebra for “Pareto Form” of Lognormal PDF

The density function of a lognormal distribution is given by:

f(x) =
1

xσ
√
2π

exp

(
−(ln(x)− µ)2

2σ2

)
Expanding the square and grouping the ln(x) terms yields:

f(x) =
1

xσ
√
2π

exp

(
ln
(
x(

− ln(x)+2µ

2σ2 )
)
− µ2

2σ2

)
Applying eln(ab) = ab and combining with x−1:

f(x) =
1

σ
√
2π

exp

(
− µ2

2σ2

)
x−(

ln(x)−2µ

2σ2 )−1

Writing the constant term 1
σ
√
2π

as Γ, the lognormal distribution can be written as:

f(x) = Γx−α(x)−1 , where α(x) = ln(x)− 2µ

2σ2

which is the same as Equation 3 in themain text. The representation of the lognormal PDF
here appears in Malevergne et al. (2011), and is similar to that in Eeckhout (2009).

The lognormal distribution, while fitting the body of the population distribution well,
provides somewhat worse fit compared to similar distributions with more parameters,
such as the double Pareto lognormal. We focus on describing the full population distribu-
tion as lognormal for relative simplicity of analysis. More robust discussions of goodness-
of-fit tests and alternative statistical descriptions of population distributions can be found
in Giesen et al. (2010) and Ioannides and Skouras (2013).
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Figure A.I:
Sums of Positive Random Variables Drawn from Various Distributions
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Notes: Histograms show 1,000,000 replications. The random variables in the first row are drawn from a
lognormal distribution with parameters µLN = 0, σLN = 1, the middle row from a truncated normal distri-
bution with parameters µTN , σTN = 0 and minimum value α = 0.001, and the bottom row from a uniform
distribution on (0, 1]. The red overlaid line represents a normal distribution with the same mean and stan-
dard deviation as the underlying sums in each panel. The sums appear distributed normally in both levels
(column 1) and in logs (column 2), as implied by Lemma 1.

A.2 Discussion of Lemma 2 (Marlow 1967)

A demonstration of the apparent normality in both levels and logs of sum of positive ran-
dom variables is included in the main text in Figure A.I, which shows the sums of lognor-
mal (exp(N(0, 1)), truncated normal (a standard normal truncated at 0), and (0,1] uniform
random variables. The sums of these random variables converge to normal distributions,
while the log of the sum also appears to follow a normal distribution.

Examples of sums over several positive random variables (lognormal, truncated nor-
mal, and uniform) are presented in Figure A.I, exhibiting the appearance of normality in
both levels and logs for these sums.

The Marlow result is interesting, as it appears to imply that a sum of positive random
variables can be viewed as approaching a lognormal or normal distribution for large N.
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However, if we are considering both the normal and lognormal approximations for a sum
of positive random variables we can demonstrate convergence of the lognormal approx-
imation to the equivalent normal approximation—that is, the lognormal and normal ap-
proximation will be identical in the limit. The following discussion draws onMazmanyan
et al. (2008).

For simplicity, consider an approximation of i.i.d positive random variables with mean
m and variance s2. The normal approximation will have parameters µN = nm = M and
σ2
N = ns2. We will now define the parameters for the lognormal approximation of the

sum.
First, define the coefficient of variation as

Cv =

√
ns2

nm
=

√
ns

nm
(24)

As n grows large, Cv → 0.
The parameters µX and σX of the lognormal approximation can be found by

σ2
X = ln(1 + C2

v ) (25)

µX = ln(nm)− σ2
X

2
(26)

As Cv → 0when n→ ∞, Equation (25) gives that as n→ ∞:

σ2
X → C2

v , so σX → Cv , and σX → 0 (27)

Nowwe demonstrate that the lognormal approximation converges to the expected nor-
mal. As, for somem, P (||x−M || > ϵ|n ≥ m) = 0, so x

M
→a.s. 1. We canwrite x

M
·σX →

√
ns

nm
,

and so xσX →
√
ns = σN . This means 1

xσX

√
2π

→ 1
σN

√
2π
.

Similarly, x = xM
M

, so ln(x) = ln(M) + ln( x
M
). As x

M
→ 1, so ln( x

M
) → x−M

M
. As

µX = ln(M)− σ2
X

2
, and σX → Cv → 0, andM = µN then we have

ln(x)− µx

σX
→

ln(M) + (x−M
M

)− ln(M)

σX
=
x−M

MσX
→ x−M

M · Cv

=
x− µX

σN
(28)

So we have shown, as n→ ∞,

f(x) =
1

xσX
√
2π
e
− 1

2

(
ln(x)−µX

σX

)2

→ 1

σN
√
2π
e
− 1

2

(
x−µN
σN

)2

(29)
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So as n increases, the lognormal approximation to the sum approaches the normal
approximation.
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A.3 Definitions of α-mixing, sequences and fields

Definition 1, α-mixing (sequences): Suppose X := (Xk, k ∈ Z) is a (not necessarily station-
ary) sequence of random variables. For −∞ ≤ J ≤ L ≤ ∞, define the σ-field

FL
J := σ (Xk, J ≤ k ≤ L(|k ∈ Z) .

The notation σ(. . .) means the σ-field ⊂ F generated by (. . .). Define:

α
(
F j

−∞,F∞
j+n

)
= sup

A∈FJ
−∞,B∈F∞

j+n

|P(A ∩B)−P(A)P(B)|.

For each n ≥ 1, define:
α(n) := sup

j∈Z
α
(
F j

−∞,F∞
j+n

)
,

The random sequenceX is said to be ”strongly mixing” (or ” α-mixing”) if α(n) → 0 as n→ ∞.

The definition above is drawn from Section 2.1 of Bradley (2005), which includes fur-
ther discussion and the definitions of additional mixing conditions.43 The ordering of
the random variablesXk, in this definition, reflects the time-series nature of this formula-
tion and reflects the “time” of the realization. We instead order the attribute type indices
g ∈ G in terms of the similarity of the attributes, such that the difference in index reflects
the “distance” between attributes g, g′ ∈ G.

The following definition of α-mixing for random fields is used in the more general
version of our proofs for a two-dimensional geography in the Supplemental Appendix,
rather than the simpler “linear” geography presented in the main text.

Definition 2, α-mixing (fields): Suppose {Xi}, i ∈ Z2 is a stationary random field where each
Xi is drawn from a common distribution. For disjoint sets S, T , define the σ-fields:

FS := σ (Xs, s ∈ S)) ,FT := σ (Xt, t ∈ T )) .

The notation σ(. . .) means the σ-field ⊂ F generated by (. . .). Define:

α (S, T ) = sup
A∈FS ,B∈FT

|P(A ∩B)−P(A)P(B)|.

Define dist(S, T ) = infs∈S,t∈T ∥s − t∥, where ∥ · ∥ denotes the Euclidean norm. For each k ≥ 1

43For additional discussion, see Billingsley (1995).
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and u, v ∈ R++, define:
α(k;u, v) := sup

S,T
α (S, T ) ,

where the supremum is taken over all disjoint subsets S, T with |S| ≤ u, |T | ≤ v such that
dist(S, T ) ≥ k. The random field {Xi} is said to be “strongly mixing” (or “α-mixing”) if
α(k;∞,∞) → 0 as k → ∞.

The definition above is drawn fromDoukhan (1994) and Bradley (1993), both ofwhich
also include further discussion and additional mixing concepts for fields. The key dis-
tinction from the definition for sequences introduced earlier is the need to incorporate a
concept of distance, which previously was summarized by the indices when considering
α-mixing of a sequence.
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A.4 Population as a random variable

The system of equations describing the population distribution, given for a particular lo-
cation i in Equation 19 can be expressed in matrix form as:

θh = J[h]
γ2
γ1 (30)

where θ = W̄ σ−1, each element of the vector h is given by hi = Lσ̃γ1
i , and [h]

γ2
γ1 indicates

raising each element of the vector h to the power γ2
γ1
. The matrix J, where elements ji,n =

A
σ̃(σ−1)
i U σ̃σ

i τ 1−σ
i,n Aσ̃σ

n U
σ̃(σ−1)
n , is given by

J =


j1,1 j1,2 . . . j1,N

j2,1 j2,2 . . . j2,N

. . . . . . . . . . . .

jN,1 jN,2 . . . jN,N


where J is an N̄ × N̄ random matrix, with its elements consisting of the realizations for
fundamentals and trade costs for all locations. The vector h, which consists of transforma-
tions of the population vector, is the eigenvector corresponding to the leading eigenvalue
of this random matrix as shown in the online appendix to Allen and Arkolakis (2014).
The eigenvectors of random matrices are themselves random vectors, which motivates
our treatment of each Li as a random variable.44

Note that each sequence {sn,i} for a given i can be written as the vector si resulting
from the following matrix multiplication:

si = θkiJ−1h (31)

where ki is a vector of elements kn,i = τ 1−σ
i,n Aσ̃σ

n U
σ̃(1−σ)
n .

The randomvectorh is not the eigenvector of the randommatrixK. The vector si results
from themultiplication of a randomvector and a randommatrix, motivating the treatment
of elements sn,i as random variables.

44For a review of random matrices, see Anderson et al. (2010) and for results on eigenvectors see Ben
Arous and Guionnet (2010) and O’Rourke et al. (2016).
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A.5 Proofs for random fields

Several of our results generalize directly to geographies in two dimensions, as they neces-
sitate an α-mixing sequence (as in the one-dimensional case) or otherwise do not depend
on dimensions of the geography. This is true for Proposition 1 and Proposition 2 (which
necessitate an α-mixing sequence) and Proposition 3 and Theorem 1 (which rely only on
the properties of lognormal distributions).

The complication in considering geographies in two dimensions results whenwemust
treat α-mixing random fields rather than α-mixing sequences. The additional complexity
results from the need to be careful about the concept of “distance” within the sets and
sequences when the index no longer neatly summarizes this information. The definition
in Supplemental AppendixA.3 forα-mixing fields, for instance, defines the partition of the
field into subsets by the Euclidean distance between the nearest elements of each subset.

To extend the proofs of Proposition 4 and Theorem 2 we show that the key properties
of α-mixing sequences from Bradley (2005) Theorem 5.2 (which provides the proof for
the main text case of sequences) can be extended to the case of α-mixing fields.

Lemma A.1: Suppose that for each n = 1, 2, 3, ..., X(n) :=
(
X

(n)
k , k ∈ Z2

)
is a (not necessarily

stationary) field of random variables. Suppose these fields X(n), n = 1, 2, 3, ... are independent of
each other. Suppose that for each k ∈ Z2, hk : R×R×R× . . .→ R is a Borel function. Define the
field X := (Xk, k ∈ Z2) of random variables by Xk := hk

(
X

(1)
k , X

(2)
k , X

(3)
k , . . .

)
, k ∈ Z2. Then

for eachm ≥ 1, α(X,m) ≤
∑∞

n=1 α
(
X(n),m

)
Proof: First, we want to show that α-mixing is preserved over measurable transforma-

tions of α-mixing random fields, and thenwewant to show that combinations of α-mixing
random fields are alsomixing. For brevity, wewrite α(k) in place of α(k;∞,∞) as appears
in the definition of α-mixing fields in Supplemental Appendix A.3.

1. Define the field {D̄i} such that for all i ∈ Z2, D̄i = j
(
D

(1)
i , D

(2)
i , D

(3)
i , ...

)
, where j(·)

is a measurable mapping that takes the field {Di}, which is an n-tuple of random
variables for each i ∈ Z̄, as input. The field {Di} is α-mixing with respect to distance
k. We want to show that the field {D̄i}will be mixing as well. First note that

P
(
D̄s∈S ∈ A, D̄t∈T ∈ B

)
= P

(
(D

(1)
s∈S, D

(2)
s∈S, D

(3)
s∈S, ...) ∈ j−1(A),

(D
(1)
t∈T , D

(2)
t∈T , D

(3)
t∈T , ...) ∈ j−1(B)

)
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And so,

αD̄(k) = sup
A,B

∣∣P (D̄s∈S∗ ∈ A, D̄t∈T∗ ∈ B
)

− P
(
D̄s∈S∗ ∈ A

)
P
(
D̄t∈T∗ ∈ B

)
= sup

A,B
|P
(
(D

(1)
s∈S∗, ...) ∈ j−1(A), (D

(1)
t∈T∗, ...) ∈ j−1(B)

)
− P

(
(D

(1)
s∈S∗, ...) ∈ j−1(A)

)
P
(
(D

(1)
t∈T∗, ...) ∈ j−1(B)

)
|

≤ αD(k),

as αD(k) is defined as the supremum over sets S, T , not the fixed S∗, T∗ that corre-
spond to {D̄i}. As αD(k) → 0 as k → ∞, then αD̄(k) → 0 as well and so {D̄i} is
α-mixing.

2. We now show that given two independent stationary random fields {Yi}, {Zi}where
i ∈ Z2 which are α-mixing with respect to distance k, the bivariate field {Xi} where
Xi = (Yi, Zi) is also mixing.
Define I :

I = |P(Xs∈S ∈ A,Xt∈T ∈ B)−P(Xs∈S ∈ A)P(Xt∈T ∈ B)|

= |P((Ys∈S, Zs∈S) ∈ A, (Yt∈T , Zt∈T ) ∈ B)

−P((Ys∈S, Zs∈S) ∈ A)P((Yt∈T , Zt∈T ) ∈ B)|

Define

f(Zs∈S, Zs∈T ) = P((Ys∈S, Zs∈S) ∈ A, (Yt∈T , Zt∈T ) ∈ B)

g(ZS∈S) = P((Ys∈S, Zs∈S) ∈ A)

h(Zt∈T ) = P((Yt∈T , Zt∈T ) ∈ B)

Substituting in and taking expectations,

I =|E[f(Zs∈S, Zs∈T )]−E[g(Zs∈S)h(Zt∈T )]|

Add and subtract E[g(Zs∈S)]E[h(Zt∈T )]:

= |E[f(Zs∈S, Zs∈T )]−E[g(Zs∈S)]E[h(Zt∈T )]

+E[g(Zs∈S)]E[h(Zt∈T )]−E[g(Zs∈S)h(Zt∈T )]|

9



Re-arrange and, using the | · |,

= |E[f(Zs∈S, Zs∈T )]−E[g(Zs∈S)]E[h(Zt∈T )]

− (E[g(Zs∈S)h(Zt∈T )]−E[g(Zs∈S)]E[h(Zt∈T )])|

≤ |E[f(Zs∈S, Zs∈T )]−E[g(Zs∈S)]E[h(Zt∈T )]|︸ ︷︷ ︸
II

+ |E[g(Zs∈S)h(Zt∈T )]−E[g(Zs∈S)]E[h(Zt∈T )]|︸ ︷︷ ︸
III

Begin with II , where we use independence of Y, Z and mixing of Y to show

II = |E[f(Zs∈S, Zs∈T )]−E[g(Zs∈S)Eh(Zt∈T )]|

= |E[P((Ys∈S, Zs∈S) ∈ A, (Yt∈T , Zt∈T ) ∈ B)]

−E[P((Ys∈S, Zs∈S) ∈ A)]E[P((Yt∈T , Zt∈T ) ∈ B)]|

= |E[P((Ys∈S, Zs∈S) ∈ A, (Yt∈T , Zt∈T ) ∈ B|Zs∈S = zs∈S, Zt∈T = zt∈T )]

−E[P((Ys∈S, Zs∈S) ∈ A|Zs∈S = zs∈S)]E[P((Yt∈T , Zt∈T ) ∈ B|Zt∈T = zt∈T )]|

= |P(Ys∈S ∈ A, Yt∈T ∈ B)−P(Ys∈S ∈ A)P(Yt∈T ∈ B)|

Taking the supremum over A,B, we have

II ≤ αY (S, T )

Now consider III :

III = |E[g(Zs∈S)h(Zt∈T )]−E[g(Zs∈S)]E[h(Zt∈T )]|

= |Cov(g(Zs∈S), h(Zt∈T ))|

Note that ∥g(Zs∈S)∥∞, ∥h(Zt∈T )∥∞ ≤ 1. By Lemma 3.1 of Doukhan (1994) and the
α-mixing of {Zt} we have

III ≤ 4αZ(S, T )

And so, putting together the above and, taking the supremum over A,B:

αX(S, T ) ≤ αY (S, T ) + 4αZ(S, T )

10



Taking the supremum again over all S, T such that dist(S, T ) ≥ k, we find

αX(k) ≤ αY (k) + 4αZ(k)

And, as we know αY (k), αZ(k) → 0 as k → ∞, we have αX(k) → 0 as k → ∞ and so
the field {Xi} is mixing with respect to distance k.

Combining the results of Parts 1 and 2 establish the result. ■
With Lemma A.1, we can restate Proposition 4 and Theorem 2 for the case of random

fields in two dimensions where {Ai}, {Ui}, Ωi, and Si are such that i ∈ Z2.

Proposition 4 (fields): If {Ai} and {Ui}, are independentα-mixing fields, thenΩi is anα-mixing
fields.

Theorem 2 (fields): If {Ωi}} and {Si} are independent α-mixing fields, then the population field
{Li} is α-mixing.

The proofs of both extensions follow directly from Lemma A.1.
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B Pareto vs. Lognormal Simulations

We provide additional evidence for the lognormality of the true population by focusing
on the behavior of the distribution in the tail. As discussed in Eeckhout (2004), one char-
acteristic of the lognormal as compared to the Pareto is the sensitivity of the estimated
coefficient to the truncation point. This can be see in Figure A.II, where selecting alter-
native truncation points changes the estimated power law coefficient. The left column
consists of three plots where we estimate the power law coefficient on three different sub-
sets of the U.S. city distribution. Panel A presents the same plot as main text Figure I.
When including more cities (Panel C) the coefficient rises, and when including few cities
(Panel E) the coefficient falls. This is in linewith the expected behavior of the scale-varying
“shape parameter”-like term of the lognormal distribution in Equation 3. The R2 of all of
these regressions remains similarly high. The changes in the estimated coefficient are in
linewith expectations if the true underlying distributionwere lognormal and demonstrate
that, while the -1 exponent can be found for a particular truncation point (as in Figure I),
it does not appear to be a meaningful feature of the distribution.

In the right column of FigureA.II, we consider deviations in the far tail by excluding the
top quarter of cities within each subset of the city distribution. In all cases, nearly all top
quarter cities fall below the trendline predicted based on the rest of the distribution.45 The
magnitude of the systematic divergence is very large, which is obscured on the log scale.
As noted in the main text, the total deviation below the trendline in Panel A is 76 million
people missing from the top 250 U.S. MSAs, roughly a quarter of the U.S. population. The
deviations are larger when estimated on the subset of cities below the top quarter as in
Panels B, D, and F. If the Pareto were the true distribution, panel B indicates a cumulative
absence (in expectation) of 412 million people while panel D indicates a cumulative 494
million people missing from the sets of cities considered, both substantially more than the
entire U.S. population, while panel F indicates an absence of 169 million people, roughly
half the U.S. population.46

This scale variance offers evidence for the lognormal interpretation of the population
distribution. When the true population is lognormal, large economies or regions (those
containing many cities) should systematically contain smaller large cities than predicted
by the estimated power law. We first demonstrate this property of the two distributions

45Of top-quarter MSAs, 62 of 62 MSAs in Panel B, 93 of 96 MSAs in panel D, and 27 of 27 MSAs in panel
F are below the respective trendlines in Figure A.II

46Repeating this exercise with other large countries (India, China, and Brazil) using standardized city
definitions from Dingel et al. (2021) indicates similarly large divergences in the tail, all in the expected
direction (cumulative absences of 135 million, 53 million, and 8 million respectively).
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Figure A.II:
Truncation Points and Power Law Coefficients

0

2

4

6

ln
(R

an
k)

12 14 16 18
ln(Population)

(Full trendline)

n = 250    RMSE =  .1481408

lnRank = 17.294 - .96373 lnPop    R2 = 97.6%
A. US MSAs, top 250

0

2

4

6

ln
(R

an
k)

12 14 16 18 20
ln(Population)

(Trendline excluding top quarter)

n = 325    RMSE =  .0227481

lnRank = 15.04 - .78732 lnPop    R2 = 99.8%
B. US MSAs, top 250

0

2

4

6

ln
(R

an
k)

12 14 16 18
ln(Population)

(Full trendline)

n = 387    RMSE =  .1352634

lnRank = 16.553 - .9104 lnPop    R2 = 98.1%
C. US MSAs, over 100k population

0

2

4

6
ln

(R
an

k)

12 14 16 18 20
ln(Population)

(Trendline excluding top quarter)

n = 291    RMSE =  .0166049

lnRank = 14.839 - .77066 lnPop    R2 = 99.8%
D. US MSAs, over 100k population

0
1
2
3
4
5

ln
(R

an
k)

13 14 15 16 17
ln(Population)

(Full trendline)

n = 110    RMSE =  .1523178

lnRank = 19.492 - 1.1161 lnPop    R2 = 97.4%
E. US MSAs, over 500k population

0
1
2
3
4
5

ln
(R

an
k)

13 14 15 16 17 18
ln(Population)

(Trendline excluding top quarter)

n = 83    RMSE =  .0452432

lnRank = 16.566 - .90305 lnPop    R2 = 98.6%
F. US MSAs, over 500k population

Notes: The top panels (A and B) show the 388 U.S. MSAs with a population over 100k in 2020. The bottom
panels (C and D) show the 110 MSAs with a population over 500k in 2020. Panels A and C display the
trendline for the full distribution and Panels B and D display the trendline excluding the top 25% of MSAs
(in orange) in each panel. Altering the truncation point substantially influences the estimated coefficient, as
can be seen by contrasting Panels A and C with Figure I Further, nearly all top quartile MSAs falling below
the trendline (94 of 97 MSAs in panel B and 27 of 27 MSAs in panel D are below the respective trendlines).
Both are consistent with the U.S. population distribution being lognormal.
Data Source: U.S. Census
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via simulation in Figure A.III. We calibrate a lognormal distribution to match a Pareto dis-
tribution with shape parameter αP = 1 in the tail.47 The plots show the average value
over 10000 draws from each distribution at each rank of the city size distribution, with
the bands reflecting the 95 percent confidence interval. We calculate the slope at several
scales excluding the top 25% of cities, to demonstrate the tail divergence of the lognormal
resulting from its scale-variance, in contrast to the scale-invariant Pareto. When the tail is
constructed to contain 100 cities, the difference between the two plots is minimal. How-
ever, when the tail is constructed to have 800 cities, cities in the far tail of the lognormal
fall well below the estimated trendline.

47The lognormal parameter σLN = 2.6 used for these simulations is similar to that resulting from simula-
tion of the model (in Section 4) for standard parameter values in the literature. This value is larger than that
identified by Eeckhout (2004) (who finds σLN = 1.75). The difference could partially be attributed to dif-
fering truncation points, along with the empirical difficulty of evaluating the population of small locations
and the lower bound on real-world populations of 1.
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Figure A.III:
Comparison of Lognormal and Pareto Distributions of Cities
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Notes: Comparison of Lognormal (left) and Pareto (right) for simulated small, medium, and large “coun-
tries.” The LN is truncated for cities 2 standard deviations above µLN , and the Pareto has a minimum value
equivalent to this truncation point with shape parameter αP = 1. The slope in each plot is calculated ex-
cluding the top 25% of cities in each country, and the bands contain 95% of the observed values at each rank
over 1000 simulations. At small scales, the lognormal distribution at Pareto distribution are largely indis-
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diverge.
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C Data and Empirical Results

C.1 Data

In this section, we list the variables we used in Section 3 for our correlation matrices and
tables. The data come from the publicly-available data of Henderson et al. (2018).

1. Ruggedness: index measure of local variation in elevation. Originally computed by
Nunn and Puga (2012) with corrections made in Henderson et al. (2018).

2. Elevation: above sea level, meters

3. Temperature: average from 1960-1990 of monthly temperatures, Celsius

4. Precipitation: average from 1960-1990 of monthly total precipitation, mm/month

5. Land Suitability: propensity of an area of land to be under cultivation based on sepa-
rate measures of climate and soil quality

6. Distance to Coast: distance to the nearest coast, km

7. Distance to Harbor: distance to nearest natural harbor on the coast, km (great circle)

8. Distance to River: distance to nearest navigable river, km

9. Malaria: index of the stability of malaria transmission

10. Land Area: grid cell area covered by land, km2

11. Growing Days: Length of agricultural growing period, days/year
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C.2 Summary Statistics

We provide summary statistics of our attributes in Table A.I.

Table A.I: Summary Statistics for Attributes

Notes: Summary statistics for ordered geographic attributes for data points in the contiguous United States.
Data Source: Authors’ calculations based on replication files of Henderson et al. (2018)

17



C.3 Correlation Calculations

Cross-Correlations

For every attribute type g, we calculate corr(ai,aj), ∀i, j ∈ G, j ̸= g, where ag is a
vector for each attribute type comprised of attribute values aig for every location i. This
exercise tells us how correlated each attribute is with each other attribute within locations,
giving an indication of howdependent realizations of geographic attributesmay be on one
another.48

Spatial Correlation

To calculate spatial correlations within attributes, we construct rings at varying distances
d (in miles) from every grid cell i in the contiguous U.S.; we refer to a location i around
which rings are being drawn as a centroid. These rings define a collection of grid points in
theU.S., Canada, andMexico at a given buffered distance (d−10, d+10) for each centroid.49

We then select a random point, called i∗(d, g), from within each ring of distance d from
every centroid i, to construct our sets of points to calculate the correlations; we re-draw a
random point for each attribute type g for every centroid. Mathematically, our calculation
for the correlation within an attribute type g between our set of centroids and our set of
points at distance d takes the form corr(ag,adg), ∀g ∈ G, ∀d, where ag is a vector of
attribute values aig for attribute type g for all centroid locations i in our sample, and adg

is a vector of all attribute values ai∗(d,g)g, the randomly-selected points for each centroid i
at distance d for each attribute type g.

48We do not know the full suite of attributes that characterize a location’s productivity, and in our lim-
ited panel we have some attributes which are mechanically correlated within a location (such as average
temperature and growing days).

49The spatial correlation in attributes between points at distance d = 100 miles should be interpreted as
“the correlation between a point and a randomly-selected point 90–110 miles away”. The buffer is to ensure
there are eligible points at roughly the desired distance.
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C.4 Empirics of Attribute Correlations

We empirically investigate the correlation of pairs of attributes within locations and the
correlation of attributes across space. We provide support for our assumption of α-mixing
for attributes within a place, used to apply the central limit theorem above to characterize
the fundamentals, and the assumption of α-mixing of attributes across space, which will
be used in Section 3 to characterize the population distribution.

We use gridded geographic data from Henderson et al. (2018), which includes a wide
variety of first-nature geographic attributes of which we use the eleven continuous vari-
ables.50 The dataset is at the quarter-degree latitude and longitude cell level.51 We focus
on the roughly 47,000 cells grid cells in the U.S., Mexico, and Canada, with the over 13,000
of those grid cells contained in the contiguous U.S. serving as our main sample.52

First, we calculate the correlation between attributes within a given location and show
that weak dependence of attributes is a reasonable assumption, as there exist pairs of at-
tributes which do not appear correlated within places. We calculate cross-correlations
between our attributes for all grid cells in the contiguous U.S., as shown in Figure A.IVa.53

Our results show that the assumption of weak dependence of attributes appears reason-
able given the pattern of correlations of attributes within locations. While there appears
to be some correlation between some pairs of attributes within locations, the median cor-
relation among the least-correlated attribute pairs is very near 0.

Next, we demonstrate that while there is correlationwithin each attribute across space,
this correlation declines to zero as distance increases. We calculate spatial correlation at
various distances for grid points within the contiguous U.S., as seen in Figure A.IVb.54

The spatial correlation of attributes is high over short distances but as distance increases
spatial correlation falls to near zero. These results suggest spatial correlation of geographic
attributes does decline with distance, supporting the assumption that the fundamentals
will exhibit a similar pattern of declining correlation across space.

50The variables are ruggedness, elevation, land suitability for cultivation, distance to a river, distance to
an ocean coast, average monthly temperature, average monthly precipitation, distance to a natural harbor,
growing days per year, an index of malaria, and total land area of the grid cell. Variables in Henderson et al.
(2018) which were either categorical or discrete transformations of the continuous data were excluded from
our analysis.

51At the equator, a grid cell is ≈28-by-28 km; at 48 degrees latitude, ≈18-by-18 km.
52The reduction in the number of attributes and geographic scope does not drastically decrease the ex-

planatory power of the attributes on economic activity relative to Henderson et al. (2018); see Supplemental
Appendix Table A.III for a regression showing that our eleven attributes explain 43% of the variance in eco-
nomic activity in the contiguous U.S., in line with the 47%Henderson et al. (2018) found globally with their
full set of attributes.

53A description of how we calculated cross-correlation is provided in Supplemental Appendix C.3
54A description of how we calculated spatial correlation is provided in Supplemental Appendix C.3.
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Figure A.IV:
Correlations Within and Across Locations

(a)

(b)

Notes: (a) Cross-correlation and (b) spatial correlation structure of U.S. geographic attributes. The solid
black line represents the median correlation; the blue dashed lines represent the 25th and 75th percentile
bands.
Data Source: Authors’ calculations based on replication files of Henderson et al. (2018)
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C.5 Calculating the Fundamental

For every attribute in our data set which has a minimum value less than or equal to 0,
we re-define the attribute using an affine transformation to put the minimum ≈0.1. We
then construct the “worst-to-best” ordering of our attribute values according to the sign
on each attribute from a regression on attribute influence on economic activity as found
in Henderson et al. (2018), Table 1. Attributes whose sign was positive we perform no
additional transformations to. Attributes whose sign was negative we invert. We use the
signs present in that table, as opposed to signs from a smaller regression of our subset of
attributes on U.S. economic activity, because we believe the signs in their regression could
plausibly be more robust world-wide.

After choosing our attribute value ordering, we then standardize the natural log of our
attributes:

âig =
ln(aig)−mean (ln(ag))

sd(ln(ag))

where mean (ln(ag)) is the mean of that attribute across all locations and sd ln(ag) is the
standard deviation. This produces logged attributes which are mean 0 and standard de-
viation 1.

We then aggregate our attributes into a fundamental given by Equation 22:

ln(Ai) =
∑
g∈G

ξgâig

setting ξg = 1, ∀g.
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C.6 Results: Fundamental and Correlations

Figure A.V:
Lognormal Distribution of Locational Fundamentals for Contiguous U.S.
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Notes: Lognormal distribution of locational fundamentals. All eleven attributes were ordered worst to best
in terms of contribution to economic activity, logged, then standardized. The fundamental is calculated as
the standardized sum of the standardized, ordered log attributes. The attributes are at the grid-cell level
(N = 13, 426). The mean and variance are standardized to zero and one and a standard normal curve is
overlaid.
Data Source: Authors’ calculations based on replication files of Henderson et al. (2018)

We plot in Figure A.V the empirical PDF of the resulting distribution of productivity
fundamentals, calculated according to Equation 22 with ξg = 1, ∀g. The log of the empir-
ical “fundamental” here is closely fit by a normal distribution, supporting the claim that
aggregating weakly dependent and spatially correlated attributes can result in lognormal
fundamentals, both in theory and in the data.

Additionally, we calculate the spatial correlation of the logged fundamental over dis-
tance for the contiguous U.S. The table of correlation values, provided in Table A.II, shows
declining correlation over distance, consistent with our theoretical predictions and in line
with the spatial correlation declines which appear for geographic attributes (provided in
the main text).
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Table A.II: Spatial Correlation of Calculated Fundamental for the Contiguous U.S.

Distance (miles) Correlation
50 0.66
100 0.50
200 0.30
300 0.17
400 0.05
500 0.02
600 -0.01
700 -0.06
800 -0.07
900 -0.04
1000 -0.03

Notes: The table indicates declining correlation towards 0 over distance of our logged fundamental, in line
with theoretical predictions. Given randomness in the correlation calculation process, spurious and small
deviations from 0 at large distances are possible.
Data Source: Authors’ calculations based on replication files of Henderson et al. (2018).

23



Table A.III: Regression of Economic Activity on Attributes

Dependent variable:
(Log of) Radiance

(Inv) Ruggedness 0.104
(0.020)

Elevation −1.279
(0.057)

Land Suitability 0.298
(0.039)

(Inv) Dist to River −0.079
(0.024)

(Inv) Dist to Coast −0.135
(0.034)

Temperature −0.607
(0.195)

(Inv) Precipitation 0.357
(0.082)

(Inv) Dist to Harbor 0.006
(0.049)

Growing Days 1.722
(0.090)

(Inv) Malaria −0.060
(0.046)

Land Area 0.401
(0.068)

Constant −0.340
(1.102)

Observations 13,426
R2 0.431
Adjusted R2 0.430
Residual Std. Error 2.294 (df = 13414)
F Statistic 922.395 (df = 11; 13414)

Notes: Grid-cell radiant lights on attributes, contiguous United States. (Inv) indicates the attribute data was
inverted. The R2 from this regression is comparable to the main regression from Henderson et al. (2018).
Data Source: Authors’ calculations based on data from Henderson et al. (2018)

C.7 Regression of Economic Activity on Attributes

We provide regression results in Table A.III for economic activity on our eleven attributes
for a sample including all points in the contiguous United States, interpreting the R2 as
suggestive evidence of the reasonably large explanatory power first nature geographic
attributes on economic activity.
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C.8 Recovered fundamentals from Allen and Arkolakis (2014)

We next turn to analysis of the distributions of population, productivities, and ameni-
ties as found in the estimation procedure and replication package of Allen and Arkolakis
(2014). The data are for the the United States in the year 2000 and are at the county level.
County populations appear lognormally distributed, as seen in Figure A.VI. The result-
ing fundamentals recovered by Allen and Arkolakis (2014), as seen in Figure A.VII, also
appear reasonably lognormally distributed. The correlation between A and u is roughly
0.12, which one can use to parameterize our simulations.

With these inferred fundamental values, we can estimate the importance of geography
on exogenous productivities in the United States. We regress the exogenous productivity
values recovered from Allen and Arkolakis (2014) on our suite of attributes after aggre-
gating our attributes to the county level. Those results are presented in Table A.IV. The
attributes used in the regression were all standardized, so we can interpret and compare
coefficients on the attributes simply. This regression gives us coefficients which are the
weights in a Cobb-Douglas aggregation of attributes into exogenous productivity funda-
mentals. The fitted values from the regression are the part of inferred exogenous produc-
tivity captured by geography.

The regression results suggest that more agricultural growing days, closer distance to
harbor, lower precipitation, and lower temperatures are the four relativelymost important
geographic qualities for getting higher exogenous productivity of a location. Compared to
the naive assignment of uniform weights to construct the log fundamental in Figure A.V,
the weights implied by this regression could serve as a plausible starting point for more
structural modeling of exogenous productivity variation across space.

When aggregating attributes into exogenous productivity fundamentals, weight selec-
tion on attributes is of crucial importance, as the differences between the top and bottom
panels of Figure A.VIII illustrate. The top panel shows the component of exogenous pro-
ductivity from Allen and Arkolakis (2014) as explained by our attributes. These are the
fitted values of the regression given in Table A.IV. The coasts of the United States and
places with lower average temperatures are inferred as more productive than hotter, in-
land locations. This stands in stark contrast to the results in the lower panel for uniform
weights. When using uniform weights, the importance of access to water is weighted rel-
atively much more heavily in the aggregation of attributes into the fundamental. This fact
is visually striking. For example, the Mississippi River—passing through the Midwest
and exiting into the Gulf of Mexico in the vicinity of NewOrleans—is clearly outlined and
claims to represent a significant productivity advantage in this version of the world.

Finally, we illustrate how quickly the distribution of exogenous fundamentals at the
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county level can appear lognormal in Figure A.IX. The figure illustrates the densities of
logged exogenous fundamentals aggregated from increasing numbers of attributes se-
lected from our set of attributes. The top left panel is the density of one randomly chosen
attribute’s value (distance to coast) across the contiguous United States. Every subse-
quent panel illustrates the density of the fundamental from aggregating more and more
attributes, with uniform weights across attributes at each additional step. With each ad-
ditional attribute, the distribution visually appears more lognormal, and even relatively
small numbers of attributes—in this case, as small as three or four—visually appear log-
normal. What is potentially surprising is that this result comes after usinguniformweights,
again providing evidence that the lognormality of fundamentals is robust even under
naive assumptions about aggregation. Thus, we believe we have strong suggestive evi-
dence that the treatment of exogenous fundamentals as lognormal is reasonable even for
a small number of attributes.

26



Figure A.VI:
Distribution of Logged County Population in the United States
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Notes: Distribution of logged county populations of the contiguous United States in 2000, with super-
imposed normal curve. Number of counties N=3,109.
Data Source: Authors’ calculations based on replication files of Allen and Arkolakis (2014).
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Figure A.VII:
Densities of County-level Fundamentals in U.S., Allen and Arkolakis (2014)
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Original data from replication files in Allen and Arkolakis (2014)

Notes: Top panel shows distribution of logged exogenous productivities at the county-level in the United
States, with super-imposed normal curve. Bottom panel shows distribution of logged exogenous amenities
at the county-level in the contiguous United States, with super-imposed normal curve. Number of counties
N=3,109.
Data Source: Authors’ calculations based on replication files of Allen and Arkolakis (2014).
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Table A.IV: Exogenous Productivities Allen and Arkolakis (2014) on Attributes

Dependent variable:
Exogenous Productivity

(Inv) Ruggedness 0.060∗∗∗
(0.013)

Elevation 0.095∗∗∗
(0.021)

Land Suitability 0.025∗∗∗
(0.009)

(Inv) Dist to River 0.014∗∗
(0.006)

(Inv) Dist to Coast −0.030
(0.024)

Temperature −0.106∗∗∗
(0.011)

(Inv) Precipitation 0.132∗∗∗
(0.023)

(Inv) Dist to Harbor 0.152∗∗∗
(0.021)

Growing Days 0.211∗∗∗
(0.024)

(Inv) Malaria 0.002
(0.011)

Land Area −0.025∗
(0.014)

Constant 0.056∗∗∗
(0.007)

Observations 3,108
R2 0.152
Adjusted R2 0.149
Residual Std. Error 0.287 (df = 3096)
F Statistic 50.321∗∗∗ (df = 11; 3096)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Notes: County-level exogenous productivity estimates for the contiguous U.S. from Allen and Arkolakis
(2014). Attributes were standardized. (Inv) indicates the attribute data was inverted.
Data Source: Replication files of Allen and Arkolakis (2014) and Henderson et al. (2018)
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Figure A.VIII:
Map of Geographic Productivity Fundamentals, United States

(a) Allen and Arkolakis (2014) Implied Weights
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Notes: Exogenous productivity estimates for the contiguous United States are more explained by temper-
ature, elevation, agricultural growing days, and harbor distance than other attributes. Top panel shows
the fitted values from a regression of Allen and Arkolakis (2014) log exogenous productivity estimates on
our set of geographic attributes. Bottom panel is a baseline exogenous productivity value, calculated as the
Cobb-Douglas aggregate of our geographic attributes with uniform weights (= 1). Values were logged and
binned into eight equal width bins. Darker blue shades indicate higher productivity, lighter blue shades
indicate lower productivity. Data at the county level. Missing counties are shaded dark gray.
Data Source: Authors’ calculations based on replication files of Allen and Arkolakis (2014), Henderson et al.
(2018) 30



Figure A.IX:
Densities of Fundamentals Across Numbers of Attributes, Contiguous U.S.
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Notes: Lognormal distributions of locational fundamentals appear for even small numbers of attributes.
A randomly chosen attribute’s distribution was plotted for “Attribute Count: 1” (distance to coast). In
each panel thereafter, another attribute from our set of attributes was selected without replacement and
added, producing the empirical density function in each panel. All attributes were ordered worst to best
in terms of contribution to economic activity, logged, then standardized. The fundamental is calculated
as the standardized sum of the standardized, ordered log attributes. The attributes are at the county level
(N = 3, 109). The mean and variance are standardized to zero and one and a standard normal curve is
overlaid.
Data Source: Authors’ calculations based on replication files of Henderson et al. (2018)
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Figure A.X:
Example of “Dartboard” Geography

Notes: The figure shows the middle settlements of our full geography to provide an example of how we
induce variation in trade costs.

D Additional Simulated Results

D.1 Example of “dartboard” geography

In our simulated results we first randomly generate a dartboard geography to ensure dis-
persion in trade costs. We take draws from uniform distributions with parameters [0, a]
where a reflects the maximal horizontal and vertical dimension of our full square geog-
raphy. We take draws until we have realized a set number of locations within the full
geography. Figure A.X shows the locations in the center of our full geography to provide
an example of the realized “dartboard.” Using a dartboard geography is convenient be-
cause it allows us to ensure trade costs respect the triangle inequality, ensures random
variation in trade costs, and obviates the need to calculate least-costs paths beyond taking
the Euclidean distance between points.
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D.2 The distribution of Si

Our proof has two implications for the distribution of Si, the “market access” term in the
equilibrium population condition, in simulation that we verify here. First, by Lemma 1,
Theorem1 implies thatSi will appear distributed normally in both levels and logs. Second,
Theorem 1 and Theorem 2 require that S

1
σ̃γ1
i is independent of Ωi.

We demonstrate that the first property holds by plotting the histogram of values of Si

for a given geography in both logs and levels, along with the respective QQ plots compar-
ing both to a normal distribution, in Figure A.XI. The distribution in Figure A.XI displays
the expected patterns, with a good fit to the normal distribution in both levels and logs
as implied by Theorem 1. The smaller than expected right tail may be attributable to too
little dispersion in trade costs or the size of the grid we simulate.

To check independence, we verify that the average correlation between Ωi and S
1

σ̃γ1
i

over the 1000 replications is 0.017, indicating the two terms are virtually uncorrelated as
implied by the proof. While not a sufficient condition for independence, no correlation is
necessary condition.

We take these simulated results as evidence that the mechanism we emphasize in our
proofs is the mechanism driving the result. Further, we note that the setting we used for
our simulation has very little variation in trade costs compared to a more realistic geog-
raphy. Greater variation should be expected to increase the fit of the simulated Si to the
expected distribution and reduce the correlation ofΩi and S

1
σ̃γ1
i , as shown in Supplemental

Appendix D.4.
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Figure A.XI:
Distribution of Sums
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Notes: The figures above show a realization of the vector of Si terms for some exogenous geography and
associated population vector. The distribution of Si appears normal in both levels and logs.
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D.3 Additional simulations: Varying Parameter Values

In the simulations for varying parameter values, we take all combinations of
α = [0.02, 0.04, 0.06, 0.08, 0.1], β = [−0.25,−0.30,−0.35,−0.40,−0.45,−0.50], and
δTC = [0.0005, 0.001, 0.0015, 0.002, 0.0025]. For each combination, we find the population
distribution for 100 draws of the exogenous geography in a grid of the same dimensions
as for our main results. We set the number of locations in the full geography to 10000.

We here report the full table of estimated parameter values for three values of δTC ,
at 0.0005, 0.0015, and 0.0025. When increasing α, the coefficient tends to increase (flat-
ter slope). When increasing β, the coefficient tends to decrease (steeper slope). When
increasing δTC , the coefficient tends to increase (flatter slope). As can be seen in Tables
A.V (showing average coefficients) and A.VI (showing median coefficients) the change is
nearly always in the anticipated direction.

To get the comparative statics reported in Table II, using the average estimated coeffi-
cient θ̂i from each of the 150 combinations of parameters we estimate the following regres-
sion:

θ̂i = ψ1αi + ψ2βi + ψ3δTC,i + ϵi (32)

where the estimated coefficients ψ̂1, ψ̂2, and ψ̂3 are estimates of ∂θ1
∂α

, ∂θ1
∂β

, and ∂θ1
∂θ

, respec-
tively. The signs of these coefficients are reflected in Table II, and the full regression output
is included in Table A.VII.

Notably, the estimated coefficients are consistently in the neighborhood of -1 through-
out the parameter spacewe simulate here. Given alternative truncations of the distribution
(either expanding or reducing the number of locations included, as discussed in Gibrat
(1931)) achieving a -1 slope is likely possible for most of these parameter combinations.
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Table A.V: Changes to Mean Power Law Coefficient through Model Parameters

Panel A: δTC = 0.0005

β = 0.25 β = 0.30 β = 0.35 β = 0.40 β = 0.45 β = 0.50

α = 0.02 –0.750 –0.842 –0.928 –1.013 –1.109 –1.181
(0.034) (0.030) (0.036) (0.043) (0.035) (0.046)

α = 0.04 –0.718 –0.813 –0.899 –0.980 –1.075 –1.152
(0.027) (0.032) (0.037) (0.036) (0.044) (0.040)

α = 0.06 –0.696 –0.778 –0.875 –0.953 –1.050 –1.134
(0.029) (0.030) (0.034) (0.039) (0.035) (0.050)

α = 0.08 –0.665 –0.757 –0.841 –0.928 –1.014 –1.101
(0.026) (0.028) (0.035) (0.042) (0.038) (0.042)

α = 0.10 –0.640 –0.724 –0.819 –0.899 –0.990 –1.072
(0.029) (0.029) (0.029) (0.036) (0.036) (0.041)

Panel B: δTC = 0.0015

β = -0.25 β = -0.30 β = -0.35 β = -0.40 β = -0.45 β = -0.50

α = 0.02 –0.736 –0.828 –0.917 –1.002 –1.091 –1.183
(0.032) (0.032) (0.038) (0.038) (0.041) (0.051)

α = 0.04 –0.708 –0.794 –0.886 –0.969 –1.052 –1.142
(0.032) (0.032) (0.037) (0.042) (0.042) (0.046)

α = 0.06 –0.683 –0.769 –0.852 –0.942 –1.025 –1.116
(0.032) (0.037) (0.036) (0.038) (0.043) (0.045)

α = 0.08 –0.640 –0.738 –0.827 –0.918 –1.008 –1.094
(0.030) (0.031) (0.032) (0.041) (0.043) (0.043)

α = 0.10 –0.614 –0.711 –0.799 –0.889 –0.977 –1.066
(0.035) (0.030) (0.037) (0.036) (0.040) (0.040)

Panel C: δTC = 0.0025

β = -0.25 β = -0.30 β = -0.35 β = -0.40 β = -0.45 β = -0.50

α = 0.02 –0.714 –0.811 –0.901 –0.982 –1.080 –1.166
(0.047) (0.035) (0.039) (0.043) (0.046) (0.046)

α = 0.04 –0.688 –0.772 –0.863 –0.959 –1.044 –1.127
(0.033) (0.035) (0.038) (0.038) (0.045) (0.049)

α = 0.06 –0.657 –0.747 –0.830 –0.922 –1.021 –1.106
(0.034) (0.033) (0.041) (0.038) (0.047) (0.051)

α = 0.08 –0.624 –0.717 –0.804 –0.886 –0.986 –1.075
(0.032) (0.035) (0.035) (0.034) (0.041) (0.050)

α = 0.10 –0.593 –0.683 –0.776 –0.867 –0.954 –1.044
(0.034) (0.032) (0.034) (0.042) (0.035) (0.042)

Notes: Table containing the average coefficient over 100 simulations on the exogenous geography. The stan-
dard deviation of the estimated coefficient over the 100 simulations is in parenthesis.
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Table A.VI: Changes to Median Power Law Coefficient through Model Parameters

Panel A: δTC = 0.0005

β = -0.25 β = -0.30 β = -0.35 β = -0.40 β = -0.45 β = -0.50

α = 0.02 –0.748 –0.850 –0.928 –1.023 –1.113 –1.191
α = 0.04 –0.719 –0.813 –0.903 –0.986 –1.077 –1.156
α = 0.06 –0.703 –0.789 –0.879 –0.955 –1.051 –1.139
α = 0.08 –0.672 –0.763 –0.851 –0.930 –1.019 –1.109
α = 0.10 –0.648 –0.725 –0.823 –0.904 –0.993 –1.078

Panel B: δTC = 0.0015

β = -0.25 β = -0.30 β = -0.35 β = -0.40 β = -0.45 β = -0.50

α = 0.02 –0.742 –0.833 –0.918 –1.004 –1.093 –1.190
α = 0.04 –0.714 –0.790 –0.898 –0.976 –1.057 –1.151
α = 0.06 –0.689 –0.770 –0.859 –0.951 –1.027 –1.119
α = 0.08 –0.658 –0.741 –0.829 –0.932 –1.015 –1.100
α = 0.10 –0.618 –0.713 –0.801 –0.900 –0.987 –1.075

Panel C: δTC = 0.0025

β = -0.25 β = -0.30 β = -0.35 β = -0.40 β = -0.45 β = -0.50

α = 0.02 –0.733 –0.817 –0.903 –0.992 –1.089 –1.170
α = 0.04 –0.697 –0.765 –0.865 –0.965 –1.046 –1.141
α = 0.06 –0.671 –0.756 –0.830 –0.925 –1.027 –1.117
α = 0.08 –0.610 –0.728 –0.808 –0.895 –0.996 –1.089
α = 0.10 –0.601 –0.692 –0.783 –0.881 –0.957 –1.061

Notes: Table containing the median coefficient over 100 simulations on the exogenous geography.

Table A.VII: Estimated Coefficients from Regression 32

(1)
α 1.449***

(0.0131)

β 1.769***
(0.00433)

δTC 16.72***
(0.523)

adj. R2 0.999
N 150
Standard errors in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table A.VIII: Normality Tests, “Idiosyncratic” Distance Simulations

Kolmogorov-Smirnov Lilliefors Jarque-Bera
Rejected at 1% 0.000 0.010 0.013
Rejected at 5% 0.000 0.042 0.075

Notes: Table shows the share of tests for a normal distribution rejected for the log equilibrium population of
1000 Monte-Carlo simulations.

D.4 Simulation with idiosyncratic shocks to effective distance

Variation in trade costs across locations are likely substantially greater than in the simple
geography we simulate in our main specification. Consider the low trade costs for loca-
tions along natural bodies of water or along man-made transportation networks such as
canals, train lines, or roadways. Trade costs can also vary for locations-specific idiosyn-
cratic reasons such as policy (tariffs on broad categories of goods and other trade barriers)
or bilateral factors that encourage or discourage trade (tariffs on particular countries or
shared language).

In this appendix section we show that inducing additional variation in realized trade
costs improves the simulated results relative to the more restrictive baseline we presented
in the main paper. We here consider the potential for trade costs to vary for idiosyncratic
location-specific and bilateral reasons.

We here simulate with τi,n = exp(δTCβiβi,ndi,n), where βi ∈ (0, 1) and βi,n ∈ (0, 1). We
draw all βi and βi,n = βn,i from a uniform (0,1) distribution. The parameter values are the
same as in our baseline results and we simulate for 10,000 locations as in the Monte Carlo
results.

Notably, the lognormality of the resulting population distribution is rejected less fre-
quently than in our baseline results. The distribution of Si is also appreciably more log-
normal when including additional variation in effective distance than in baseline.
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Figure A.XII:
Example of the Equilibrium Population Distribution, “Idiosyncratic” Distance
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Notes: The top left panel shows the model’s log population appears to follow a normal distribution. The
top right panel contains a QQ plot of the model’s log population distribution, indicating that it very closely
matches a normal distribution. The log rank-size plot at the bottom shows a strong resemblance to the
typical log rank-size plot for cities along with the characteristic divergence of the largest locations below the
trendline.
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Figure A.XIII:
Distribution of Si, Market Access Term, “Idiosyncratic” Distance Simulation
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Notes: The figures above show a realization of the vector of Si terms for some exogenous geography and
associated population vector. The distribution of Si appears normal in both levels and logs.
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Figure A.XIV:
Smoothed Output Over 1000 MC Simulations, “Idiosyncratic” Dist.
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Slope: -0.9617

1000-draw MC Value

Coef. of Avg. -.962

Avg. over Coefs -.958
Std. Dev. (.055)

Min -1.138
5pct -1.053
25pct -.994
50pct -.957
75pct -.921
95pct -.869
Max -.797

Notes: The population distribution resulting from numerical simulation of model with “effective” distance
is in the upper left panel, and the resulting QQ plot is on the upper right. Both show that the equilibrium
population distribution appears lognormal. The city size distribution of the Monte Carlo output is in the
lower left, and statistics over model simulations the lower right. The slope on the lower left left represents
the slope taken over the average of log(pop) at each rank over 1000 simulations, and the bounds contain 95%
of the log populations at each rank of the distribution. The table displays statistics over the 1000 estimated
power law coefficients from the simulations.
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